
ABSTRACT

YUFANG BAO. Nonlinear Image Denoising Methodologies.

(Under the direction of Prof. Hamid Krim.)

In this thesis, we propose a theoretical as well as practical framework to combine geo-

metric prior information to a statistical/probabilitstic methodology in the investigation of a

denoising problem in its generic form together with its various applications in signal/image

analysis.

We are able in the process, to investigate, understand and mitigate existing limitations

of so-called nonlinear diffusion techniques ( such as the Perona-Malik equation) from a

probabilistic view point, and propose a new nonlinear denoising method that is based on a

random walk whose transition probabilities are selected by the information of a two-sided

gradient. This results in a piecewise constant filtered image and lifts the long-standing

problem of an unknown evolution stopping time.

Our second contribution is in establishing a direct link between multi-resolution analysis

techniques and so-called scale space analysis methods, which we in turn utilize to improve

the performance of segmentation-optimized image analysis techniques. This is accomplished

by using wavelets of higher order vanishing moments, specifically, we achieve a reduction in

the typical ”blocky” artifacts and a better preservation of texture information.

Our third and final contribution is to propose a drastically different approach by isolating

statistically independent components in a signal, which we later use as a basis for discrim-

ination against noise, or potentially as plain features. This is related to the well known

independent component analysis ( ICA ), for which we first propose α−Jensen -Rényi di-

vergence as an information- theoretic criterion. In addition, we propose a Rényi mutual

divergence as a better criterion to separate mixed signals along with a non-parametric esti-

mation technique for such a measure for 1-D problems.
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7.1 Definition of Rényi Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
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7.11 Approximated 0.5−Rényi mutual divergence and its exact theoretical value 102

7.12 Functions of f = xα, with 0 < α < 1 and 1 < α ≤ 2 . . . . . . . . . . . . . . 103



Chapter 1

Introduction

One/two dimensional signals characterized by singularities are usually contaminated by ad-

ditive noise, which cause difficulties in localizing them. This thesis will address this issue

as related to problems of signal restoration, segmentation and edge detection as briefly de-

scribed in this chapter. Upon motivating and formulating the basic problem, we summarize

our contributions in this direction using a stochastic random walk, wavelet frame theory and

information measure as the basic analytical tools.

1.1 Problem Motivation and Formulation

The primary goal of processing a noisy signal is to obtain a reconstruction as close to the

original clean signal as possible, which, in turn, provides a reliable( hopefully, robust ) version

for segmentation, and edge detection of a signal/image. The design of a filter targeted for

denoising purpose is normally based on some prior knowledge about the signal, e.g., staircase

or smooth etc. In this thesis, Our approach to denoising is first based on a controlled

nonlinear stochastic random walk to achieve a scale space analysis( as in Chapter 2, 3) to

enhance images. To better preserve texture in images, in Chapter 5, we use wavelet frames

to simultaneously improve the enhancement as well as the segmentation. In chapter 7, we

introduce two new information theoretical approaches to extract independent components

from mixed signals.

A classical method to restore a useful signal is to adapt a probabilistic signal prior model

in applying a statistical methodology, such as Maximum A Posteriori(MAP) estimation,

see[32, 31]. A precise probabilistic model is, however, usually unavailable and a wrong

1



CHAPTER 1. INTRODUCTION 2

model may yield significant errors and is unacceptable in signal recovery problem. An effort

of adopting a more objective energy functional maybe constructed to derive a MAP-like

principle by line of variational formulation approach and rooted in the intrinsic geometry

and smoothness of the signal. The optimization of such a functional by way of the Euler-

Lagrange equation yields a steepest gradient descent search for the optimal signal/image.

The so-obtained partial differential equation (PDE) is an evolution of a signal/image through

scales.

Scale space, first introduced as a homogenous dynamic low-pass filter linearly smooth

away noise with increasing of scale, was extended to a nonlinear selective smoothing by

Perona-Malik [74, 75, 89]. This triggered an intense interest in searching for new non-

linear filters to better preserve features [73, 78, 93, 87, 60, 94, 15, 58]. While simple to

implement, these procedures become complex involved for noise contaminated images[8, 91].

Several improvements have been proposed since, and for example, a more flexible tech-

nique, which has been shown to be equivalent to anisotropic equation is that of Mean-field

annealing(MFA)[40], for which, the parameter choice is much simpler.

Most, if not all, of existing techniques have been predominantly deterministic in nature,

with little or no stochastic treatment or interpretation of the diffusion. In addition, unless

a specific stopping time is known to be adequate, the resulting evolution equation is well

known to almost always lead to a complete smoothing of the signals( i.e., the steady state of

the PDE). Pollak et. al. [77, 78] recently proposed an approach addressing robustness issues,

and showed some remarkable results for a wide class of perturbation noises. The analysis

remained as in all other cases, fundamentally deterministic, and also required knowledge of

the stopping time for the evolution.

From a probabilistic vantage point, the characteristics of the random process which un-

derly the diffusion have so far been overlooked, and their overall influence on the solution

in different scenarios has remained unclear. One of our goals in this thesis is to first detail

a probabilistic framework which helps us provide an alternative view of the nonlinear diffu-

sion problem. This in turn, is instrumental in our providing an alternative interpretation of

existing methods, e.g. Perona-Malik equation, and in using the gained insight to propose a

solution to its well known limitations. More specifically, we view an evolution equation by

way of a controlled diffusion [57] strategies as a solution resulting from an optimization of an
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energy functional. This ultimately leads to a two/four state Markov Chain (MC) with one

step transition probabilities well adapted to preserving the salient features of a signal/image(

such as edges) while smoothing away the noise. As will be elaborated on further below, in

addition to a marked performance improvement over P-M equation, and by way of our newly

proposed technique, we are able to lift a longstanding problem in nonlinear diffusion, namely

requiring to have prior knowledge of the stopping time. We in fact show that the stable point

for our equation is a staircase function.

The resulting image as a staircase function is, however, at a cost of a loss of texture

in the image. This as further elaborated on below, is inherent to the first order Markov

property assumed for the image and implicit in the edge modelling(by a first order difference

gradient). In the second part of our work, we address the texture loss problem in the course

of smoothing by the before mentioned technique.

As we can see, piecewise picture is the best effort we may obtain through evolution so

far. On the other hand, wavelet theory provides various methods to explore the intrinsic

properties of a signal, wavelets of higher order vanishing moments result in fewer large detail

coefficients if a function is smooth, and the decomposition of a signal into a wavelet frame

reveals redundant information. We also can see that wavelet packets provide a tool to explore

more detail content from spectral domain of view. Inspired by these facts, a nature question

then arose is whether we can investigate the interplay between PDE-based filtering and

multiscale analysis. This promising idea is implemented and a texture preserved algorithm

is proposed as shown in Chapter 5.

We show that using frames of wavelet of higher order vanishing moments than Haar’s is

tantamount to accounting for longer term correlation structure, while preserving the local

focus on equally important features(e.g. edges). This hence yields an efficient tool in ana-

lyzing and in enhancing images with a careful account for texture information. We propose

to decompose images into Daubechies 4 based wavelet frames, where redundant information

will be generated. That information is useful when we deal with noisy image although it is

not necessary when we try to reconstruct image. The problem is that, we would like to re-

cover a clear, enhanced version of the original one if the picture given is noisy. We maintain

that potentially useful information lies in the redundant representation of a signal/image

and should be fully exploited.
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Our third approach to separating and localizing various components of a signal process

is to ensure a statistical independence among them, thereby also affording one to extract

features of importance. This will be achieved by seeking to extract independent components

and whose higher order components is better regarded, as it better separate signals from

others. While many approaches spanning higher order statistics to learning algorithms have

been proposed, we proposed two new information measures which depend on the probability

density functions.

With a improve of a non-parametric estimation of mutual information, we propose a non-

parametric Rényi mutual divergence approximation using dependent data, which, together

with the better measurement property of Rényi mutual divergence over mutual informa-

tion enable us to practically apply it as an alternative criterion to ICA. We also propose

using α−Jensen-Rényi divergence that was recently developed ([37, 1]) as a new indepen-

dent measure among more than two pdf’s in lieu of mutual information. We show it to

improve performance in separating sources[5], as one way impose weighting priors (hence

contribution) of different data sets.

1.2 Summary of Thesis Main Contributions and Organization

In Chapter 3 we propose a stochastic framework where nonlinear diffusions are cast and

are given an insightful interpretation towards understanding their intrinsic behaviors. We

reinterpret a linear evolution partial differential equation(PDE) as a direct result of a mean

value of random walk functional. In addition, Perona-Malik equation is also interpreted as

a controlled random walk for which an adjusted energy functional yields a much improved

algorithm. This in fact results in a new diffusion method based on two-sided gradient is pro-

posed in section 2.6, which yields piecewise constant filtered images. Additional extensions

were also proposed [49].

In Chapter 5, We propose a new evolution-equation based technique that utilizes multi-

resolution wavelet frame coefficients. Wavelet frame coefficients include redundant infor-

mation and when the wavelets are of higher order vanishing moments, a longer correlation

structure is account for. We provide a brief contextualization and statement of the problem.

An explanation of the decomposition and reconstruction is given in section 4.3, where we
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also prove that the Heat diffusion is equivalent to subtracting second level detail of Haar

frame coefficients. In section 4.4, we explain from a spectral perspective the effect of a van-

ishing moment of a wavelet and proceed to derive the detailed implementation equations.

We finally provide some substantiating denoising image examples as a conclusion in 4.8. The

major results of this chapter have been published in [4, 6].

In Chapter 6, we provide a brief review independent component analysis (ICA) and

discuss various contrast functions used to recover independent source signals. It is shown that

all the contrast functions are in fact related to mutual information and the MLE principle.

This subsequently leads us to propose new information criteria, such as JR divergence and

Rényi mutual divergence –Examples are also provided.

In Chapter 7, We expound on these measures, show their application to ICA and de-

velop non-parametric technique for approximating the Rényi mutual divergence by a cell

approximation algorithm.

In Chapter 8, we provide some extensions and new research areas for future work.



Chapter 2

Scale Space, Diffusion and Variation

Scale space, known as a collection of signals output from a dynamic filter whose transform

functions varied with time/scale, provides a flexible choice to meet different processing pur-

poses by specifying a time/scale. Scale space filtering is effected via a partial differential

equation(PDE), which, as we will see in the following, is related to an underlying particle’s

motion which is in turn governed by a stochastic differential equation(SDE). Our motivation

of the scale space methodology proceedly exploiting the tight connection between a PDE

and a SDE, and the subsequent stochastic interpretation of the PDE solution. The interplay

between a PDE and an energy functional yields a deep insight, which in turn as we will

elaborate in later chapters, leads to a clarifying and solving some outstanding problems.

2.1 Scale Space Concept

Scale-based analysis has recently played an increasingly important role in signal and image

analysis since Witkin’s ground breaking paper[95], in which a so-called linear scale space was

constructed and the following linear evolution partial differential equation(PDE) effecting

the filtering was proposed

∂U(t, x)

∂t
= ∆U(t, x)

U(0, x) = f(x). (2.1.1)

The symbol ∆ denotes a Laplacian operator acting on filtered signals U(t, x), which may be

interpreted as copies of an original signal U(0, x) at a fixed time/scale t. This was based on

the conclusion that convolving a signal with a Gaussian kernel was equivalent to evolving it

6
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with a Heat differential operator as shown in the next equation, where time now plays the

role of scale [48, 97],

U(t, x) =
1

(
√

(2πt))d
exp

(
−|x|

2

2t

)
∗ U(0, x)

where x = (x1, · · · , xd) ∈ Rd, |x| =

√√√√
d∑

i=1

x2
i ,
′∗′ denotes convolution of two functions. From

a frequency domain’s viewpoint, this equation is equivalent to

Û(t, ω) = Û(0, ω)exp(−t|ω|2).

where Û(t, ω) represents the spatial Fourier Transform of U(t, x). This clearly explains that

the high frequency content, which represents sharp features as well as noise, is removed

when t increases or the scale becomes coarser and coarser, i.e., both noise and details will

be smoothed out and no new information added.

The interest in scale space analysis stems from the fact that optimally processing image

features may be tracked across the scale. The latter may be made to vary nonlinearly with

a proper modification of the Gaussian kernel.

Linear heat diffusion, first introduced as a homogenous scale space in filtering theory

by Witkin([95]), is an isotropic method that smooth signals with Gaussian kernel uniformly

by increasing scale, which removes important features along with noise, this lead to the de-

sire of scale space approaches that naturally preserve the intra-scale correlation information.

An approach deployed such scale information was first proposed by Perona and Malik in

their landmark paper([74]) and was aimed at preserving important sharp features such as

edges. Their technique may also be viewed as a nonlinear filter whose selective smoothing

is based upon the computed local gradient (maximal smoothing in low gradient or homoge-

neous regions, and minimal smoothing in high gradient regions), where signals are viewed

as nothing but piecewise constant functions. The novelty of this approach together with

its very promising results triggered a tremendous research activity in computer vision and

applied mathematics [73, 78, 93, 87, 60, 94], where its mathematical properties as well as its

numerical implementations and applications were investigated. A slight regularization by a

Gaussian kernel to finest smooth a noisy signal was proposed in [15, 58] prior to implementing
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nonlinear selective smoothing on the signal. On the other hand, this was interpreted in [63]

as a robust estimation that resulted in an edge-stopping function to be applied to gradient.

Many approaches have been proposed to address a variety of issues specific to images, such

as, image enhancement, segmentation, and edge detection, which have been figured among

the most often studied on account of their great relevance to low-level vision.[74, 75] (see

[89] for a good review of the literature).

2.2 Probabilistic View of Diffusion

The fact that scale space analysis is defined by a PDE-based diffusion is essential to its

probabilistic interpretation. Diffusion is used to describe a physical phenomenon that governs

the transport of heat flow moving from a high to a low spatial concentration, This may in

turn be investigated as a stochastic process of an underlying particle’s movement. This is

described by a stochastic differential equation(SDE) which has a corresponding macroscopic

(by the theory of large numbers) manifestation by way of a PDE as discussed next.

2.2.1 Diffusion and SDE

A stochastic process Xt(x) may be defined as a parameterized collection of random variables

{Xt(x)}t ∈ [0,T ] defined on a probability space (Ω, F , P ) and assuming values in Rn in

general, so that,

∀ ω ∈ Ω, ω → Xt(x, ω), t ∈ [0, T ],

where Ω is the usual sample space, F the σ-field and P the probability measure. A nice and

intuitively appealing interpretation for ω is that of a moving particle whose starting position

is x at time 0 and whose position at time t is given by Xt(x, ω). We will write Xst or Xst(x)

to denote a random process starting at x at time s, and currently at time t.

Definition 1. Let b(t, x) and σ(t, x) be continuous in t, x and assume that for some constant
K ∈ R

|b(t, x)|2 + |σ(t, x)|2 ≤ K(1 + |x|2) (2.2.1)

and that for each N ∈ R, ∃ LN with |x| ≤ N, |y| ≤ N , for which

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ LN |x− y|. (2.2.2)

A d-dimensional stochastic process Xt = (X1
t , · · · , Xd

t )T that satisfies the following stochas-
tic differential equation(SDE) exists and is called an Ito-diffusion[71].
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dXt = b(t,Xt)dt + σ(t,Xt)dBt, (2.2.3)

where Bt is a dimension m standard Brownian motion vector and b(t, x) is a d × 1 drift
coefficient vector and σ(t, x) is a d×m diffusion coefficient matrix( in this paper, we normally
consider d = 1, d = 2 and m = 1 case).

Diffusion processes defined above have continuous paths, and when σ(t, x) = σ(x), b(t, x) =

b(x), the diffusion processes are homogenous processes. We denote by p(s, x, t, dy) the prob-

ability transition function of a stochastic process Xt, i.e., p(s, x, t, dy) = P (Xt ∈ dy|Xs = x),

and by p(s, x, t, y) the probability transition density function of a particle starting at location

x at time s and reaching y at time t. As described by the following theorem, the transi-

tion probability is normally determined by the drift and the diffusion coefficients, which

characterize how the diffusion behaves as well. The infinitesimal generator (i.e., continuous

operator which describes such a motion) of the diffusion in Eq. (2.2.3) can then be written

as :

Lt =
1

2

d∑
i,j=1

aij(t, x)
∂2

∂xi∂xj

+
d∑

i=1

bi(t, x)
∂

∂xi

(2.2.4)

where a(t, x) = σ(t, x)σ(t, x)T .

2.2.2 Kolmogorov’s Backward and Forward Equations

While our focus herein is on clarifying the situations which needed to be consider for unrav-

elling the connection between a diffusion process and its corresponding PDE, the details of

the theorems below may be found in [3, 29, 34].

Theorem 1. Let p(s, x, t, y) be the transition probability density function of diffusion process
Xt, 0 ≤ t ≤ T with continuous coefficients b(t, x), σ(t, x) that satisfy certain conditions, then
p is a so-called fundamental solution of the Kolmogorov’s backward equation with Ls given
in Eq. (2.2.4),

∂p

∂s
+ Lsp = 0

lim
s↑t

p(s, x, t, y) = δ(x− y) (2.2.5)

Theorem 2. Let a transition density function p(s, x, t, y) of a diffusion process satisfy certain
conditions, and

∂p

∂t
,

∂(bi(t, y)p)

∂yi

,
∂2(σ(t, y)p)

∂yi∂yj

(2.2.6)
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exist and be continuous, then p(s, x, t, y) is a fundamental solution of Kolmogorov’s forward
equation for fixed s and x such that s ≤ t.

∂p

∂t
= L∗t p

lim
t↓s

p(s, x, t, y) = δ(x− y) (2.2.7)

where L∗ is the adjoint operator of L given by

L∗t p =
d∑

i,j=1

∂2(aij(t, y)p)

∂yi∂yj

−
d∑

i=1

∂(bi(t, y)p)

∂yi

(2.2.8)

According to these two fundamental solutions of Kolmogorov’s equations, the following

probabilistic solutions of Kolmogorov’s equations(PDEs) are formulated in term of the initial

conditions.

Theorem 3. [25] Assume f and Lt satisfy certain technical conditions, then U(t, x) =
E{f(Xs,t(x))} =

∫
f(y)P (s, x, t, y)dy, s < t, is the solution of the following PDE that has

an infinitesimal operator Lt as in Eq. (2.2.4),

∂U(t, x)

∂t
= LtU(t, x)

U(s, x) = f(x). (2.2.9)

Theorem 4. [34] Assume f and Lt satisfy certain technical conditions, then U(s, x) =
E{f(Xs,t(x))} =

∫
f(y)P (s, x, t, y)dy, where s < t, is the solution of the following PDE that

has an infinitesimal operator Ls as in Eq. (2.2.4),

∂U(s, x)

∂s
+ LsU(s, x) = 0

U(s, x) = f(x) for s ↑ t. (2.2.10)

Theorem 5. [34] Assume f and Lt satisfy certain technical conditions, then U(t, y) =∫
f(x)P (s, x, t, y)dx , s < t, then U(t, y) is the solution of the following PDE that has an

infinitesimal operator L∗t as in Eq..( 2.2.8),

∂U(t, y)

∂t
= L∗t U(t, y)

U(t, y) → f(y) for t ↓ s. (2.2.11)

With a closer look at the solution of Eq. (2.2.11), we can see that the solution can not

be expressed as a mean value of a random process since it is integrated over all the initial
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Figure 2.1: Sample pathes of a random process that begin at x at time s and arrive at y at
time t

positions and is in contrast to the case in Th. 6. In order to clarify the difference, we provide

two figures, one of which ( fig. 2.1 ) corresponds to a solution of Eq. (2.2.11).

Next, we consider diffusions where the evolution time direction is reversed, a so-called

backward diffusion(see fig.( 2.2) and reference [55][54] ), for which an alternative form of

Kolmogorov’s backward equation is given as

Theorem 6. Assume that f and Lt satisfy certain technical conditions. The expected value
U(t, x) = E{f(X̂s,t(x))} is the solution to the following backward PDE on Rd

∂U(t, x)

∂t
+ L′tU(t, x) = 0

U(t, x) = f(x) for t ↓ s (2.2.12)

where L′t is an alternative adjoint operator of Lt and is defined as

L′t =
d∑

i,j=1

aij(t, x)
∂2

∂xi∂xj

−
d∑

i,j=1

bi(t, x)
∂

∂xi

(2.2.13)

and X̂s,t, s < t is a backward diffusion process, it also denoted as X̂s(x) with the initial

condition X̂T = x. it can also be defined as a forward diffusion per Definition 1 by writing
X̂s(x) = XT−s(x) = Xt, 0 < t < T , X̂s(x) satisfies the following stochastic integral equation,

X̂s,t(x) = −
∫ t

s

b(r, X̂r,t(x))dr +
d∑

k=1

∫ t

s

σk(r, X̂r,t(x))dB̂k
r
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Figure 2.2: Random process sample pathes that begin with position y at time t and arrive
in x at time s at the inverse time direction

2.2.3 Example: Brownian Motion

An illustrating example of a linear diffusion is the process described by the PDE in Eq.

(2.1.1), in which L is specified as a Laplacian operator ∆ (i.e.,
∂2

∂x2
+

∂2

∂y2
). Brownian Motion,

clearly a homogeneous random processes, therefore yields a transition probability density

function denoted by p(t, x, y) = p(s, x, s + t, y), where x and y may be exchanged as a result

of the symmetry property of this diffusion. This property is rare for most of other processes.

As noted earlier, diffusion of heat in a homogeneous medium fundamentally stems from the

motion of particles, and it can be shown that the inherent randomness of this motion is well-

described by a Brownian motion Bt [71], where an individual outcome ω ∈ Ω in the prevailing

sample space, may be associated to a particle. The process Bt may then be interpreted as,

originating at time 0 from position x (assumed 0 for simplicity), the distance travelled by

particle ω at time t. It is well known that a transition probability density for a Brownian

motion in 1-D case, for instance, is a Gaussian PDF p(t, x, y) =
1

(2πt)1/2
e−

(y−x)2

2t ∀ x, y ∈
R, t > 0 (recall that a Brownian motion has independent Gaussian increments). It is

thus clear that a stochastic interpretation of a solution (if it exists) subjected to some

differentiability conditions, can be given by way of an ensemble average [25]

U(t, x) = Ex{f(Bt)} =

∫

R
p(t, x, y)f(y)dy, (2.2.14)

where the expectation E(·) is computed over all possible reachable positions y starting at

position x. In the 2-D case, it is similarly possible to have such an interpretation as displayed
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Figure 2.3: A particle (pixel) may diffuse over many possible paths, and an average is usually
computed.

in Fig. 2.3. The times t = t1 and t = t2 are the instants at which all possible positions are

averaged to yield a solution at the respective times.

2.3 Variational Methodology

While variational methods have been investigated in problems where minimizing cost is of

interest, i.e., energy functionals derived from a MAP principle[32, 31, 35], it has been recently

adopted to explain the mathematical foundations of scale space analysis from an optimization

theoretic viewpoint[62]. Specifically, many existing evolution equations were shown to result

from a minimization of energy functionals. The resulting Euler-Lagrange equations lead to a

steepest gradient descent method giving rise to a PDE. Using this approach, we can establish

the well known result that the Brownian motion is a result of minimizing

E(u) =

∫
|∇u|2dx, (2.3.1)

The resulting PDE as given in Eq. (2.1.1) generates different copies of the image, at

different scales, and in light of the above probabilistic interpretation, effects a particle motion
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from a region of high density to one of low density. Additional insight is achieved by way of

the following theorem applied to a generic functional.

Theorem 7. For an energy function that takes the form

E(u) =

∫
f(u,∇u)dx (2.3.2)

where f(u,∇u) is given as

f(u,∇u) =
1

2

d∑
i,j=1

aij
∂u

∂xi

∂u

∂xj

+
d∑

i=1

biu
∂u

∂xi

(2.3.3)

with aij = aji and aij satisfy certain conditions as in definition 1, then the resulting PDE
from steepest gradient descent method is given as Eq. (2.2.9). This means that the underlying
particle motion is homogenous and governed by a SDE described by an infinitesimal operator
Lt of Eq. (2.2.4) with aij(t, x) = aij, bi(t, x) = bi and aij = aji.

Proof : See Appendix.

The infinitesimal operator as in Eq. (2.2.4) now further invokes a gradient of the function

of interest. This is reflected by the energy functional and its precise effect is only clear when

aij > 0, i = j and aij = 0, i 6= j, (note that additional interactions among the component

are present when aij 6= 0, i 6= j ), and bi = 0 (as in the Laplacian case).

One may, however, consider other generalizations (general a(t, x), b(t, x) ) for more elab-

orate effects as a function of scale and space. A ease in point is that of avoiding the trivial

smoothing of an image resulting from a linear heat equation, and that of rather present-

ing key features through nonlinear transformations to slow down/eliminate some specific

filtering.

A number of very good papers have provided inspiring variational interpretations to

various nonlinear smoothing techniques [89, 83, 96, 60] and thus proposed their specific

generalized denoising methods. In [83] such an approach resulted in a constrained total

variation with a gradient descent formula. A very clear explanation of nonlinear diffusion

resulting from variational methodology is given in [96].
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2.4 Appendix

Proof of Theorem 7:

Note that f ′i(y0, y1, · · · , yd) =
∂f

∂yi

, i = 0, 1, · · · , d. For u(x), x = (x1, x2, · · · , xd),

∇u =

(
∂u

∂x1

,
∂u

∂x2

, . . . ,
∂u

∂xd

)
, and for a vector function f(u(x)) = (f1(u), f2(u), · · · , fd(u)),

denoted div(f(u)) =
d∑

i=1

∂fi(u)

∂xi

. To keep the following expression simple, we also denote

h
′
0

4
= h, h

′
i =

∂h

∂xi

, for i = 1, 2, · · · , d. According to the Gateauex differential definition(See

[62]), we have for ∀ h ∈ L2(Rd),

δE(u) = lim
λ→0

E(u + λh)− E(u)

λ

=

∫

Ω

lim
λ→0

f(u + λh,∇u + λ∇h)− f(u,∇u)

λ
dx

=

∫

Ω

d∑
i=0

f
′
i (u,∇u)h

′
idx

=

∫

∂Ω

d∑
i=0

f
′
i (u,∇u)hdx−

∫

Ω

div(∇f(u,∇u))hdx

∗
= −

∫

Ω

div(∇f(u,∇u))hdx (2.4.1)

The last equation
∗
= is established given that

∫

∂Ω

d∑
i=0

f
′
i (u,∇u)hdx = 0.

let

f(y0, y1, · · · , yd) =
1

2

d∑
i,j=1

aijyiyj +
d∑

i=1

biy0yi (2.4.2)

It is clear that

f
′
0(y0, y1, · · · , yd) =

d∑
i=1

biyi (2.4.3)
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and for k = 1, 2, . . . , d,

f
′
k(y0, y1, · · · , yd) =

1

2

(
d∑

j=1

(akjyj + ajkyj)

)
+ bky0

=
d∑

j=1

akjyj + bky0

(2.4.4)

thus

div(∇f(u,∇u)) =
d∑

i=1

∂f ′i(u,∇u)

∂xi

=
d∑

i,j=1

aij
∂2u

∂xixj

+
d∑

i=1

bi
∂u

∂xi

(2.4.5)

since h is an arbitrary function, to obtain δE(u), we see that we only need to have

div(∇f(u,∇u)) = 0,

which according to the steepest gradient descend method, the following PDE is required

∂u(t, x)

∂t
= div(∇f(u,∇u)) = Ltu(t, x) (2.4.6)

which proves Theorem 7.



Chapter 3

Nonlinear controlled diffusion

A nonlinear controlled diffusion[56, 28, 26, 71] is a different strategy to achieve a spatially

varying target diffusion and offer a framework for a better understanding of nonlinear PDEs

and corresponding diffusions. We first give a brief introduction to controlled diffusion, and

subsequently apply the latter to obtain a different and insightful respective on nonlinear

diffusion.

3.1 Definition of Nonlinear Controlled Diffusion

Definition 2. If the drift and diffusion terms b(t, x), σ(t, x) of SDE Eq. (2.2.3) are asso-

ciated with a function v(t, x), and are denoted by b(t, x, v(t, x)), σ(t, x, v(t, x)), Xv
t = Xt is

called a controlled diffusion, where Xv
t satisfies the SDE

dXv
t = b(t,Xt, v(t,Xt))dt + σ(t,Xt, v(t,Xt))dBt. (3.1.1)

where

Lv
t =

1

2

d∑
i,j=1

aij(t, x, v(t, x))
∂2

∂xi∂xj

+
d∑

i=1

bi(t, x, v(t, x))
∂

∂xi

(3.1.2)

and a(t, x, v(t, x)) = σ(t, x, v(t, x))σ(t, x, v(t, x))T .

Following Kolmogorov’s backward and forward equations, we will have corresponding

theorems if a number of conditions are satisfied. Here we only list some typical solutions of

17
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the PDE with an infinitesimal operator as given in Eq. (3.1.2)

∂Ut(x)

∂t
= Lv

t Ut(x)

Us(x) = f(x) for some 0 ≤ s ≤ t, (3.1.3)

Its solution may be written as an expected value Ut(x) = Ex{f(Xt)} =
∫

f(y)P (s, x, t, dy)

[25]. Another backward equation has the following form:

∂Ut(x)

∂t
+Lv′

t Ut(x) = 0

UT (x) = f(x) for some T ≥ t, (3.1.4)

where Lv′
t (·) is another adjoint operator of Lv

t similar to that given in Eq. (2.2.13).

The solution of this equation can again be expressed as Ut(x) = E(f(X̂st(x))), namely,

a probabilistic mean value of a reverse time process X̂t, 0 ≤ t ≤ T where T is the fixed

terminal/end time of the diffusion (or initial in the case of an inverse diffusion). Note that

a backward diffusion can be viewed as a forward diffusion by merely selecting t′ = T − t as

stated in Th. 6.

we need to, however, mention here that there are many properties of nonlinear controlled

diffusions which remain as open problems. Our approach, here is to use the properties of

linear diffusion as an inspiration for investigating some practical nonlinear problems whose

numerical implementation is of primary concern.

3.2 Nonlinear Diffusion and PDE

As noted in the previous chapter, the equivalence between a Gaussian filter and heat

equation-based evolution, led Witkin [95] to propose the following equation for filtering

a noisy observation of a signal/image f(~x), where we hereafter denote x ∈ Rd as ~x, namely

~x = (x1, · · · , xd), to separate a vector in Rd from a scalar in R1,

∂Ut(~x)

∂t
= ∆Ut(~x), (3.2.1)

where Ut(~x) denotes the data at scale t ∈ R+, and U0(~x) = f(~x) is the initial data, where

~x = x ∈ R1 denotes a noisy signal f(x) taking value in 1-D space, while ~x = (x1, x2) ∈ R2
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implies spatial coordinates of individual pixels of an image. “∆” is the Laplacian operator

(i.e.,
∂2

∂x2
when d = 1 or

∂2

∂x2
1

+
∂2

∂x2
2

when d = 2).1 The function U(·, ·) at the finest scale

(t = 0) is assumed to be comprised of a signal/image of interest and of a white Gaussian

noise of variance σ2.

Using the linear heat equation as their paradigm, Perona and Malik([75]) proposed to

modify the evolution in Eq. (3.2.1) so as to achieve maximal smoothing in homogeneous

regions of an image to eliminate noise, and minimal smoothing in high gradient regions to

preserve edges. The proposed evolution equation which will be central to our development,2

is written as,
∂Ut(~x)

∂t
= div (g (| ∇ (Ut(~x)) |)∇Ut(~x)) , (3.2.2)

where “div” represents the divergence operator, ∇ is the gradient operator, and g(·) is

some measure of ”edginess”, thus a functional which modulates the strength of the diffusion

according to the above paradigm (i.e., positive and monotonously decreasing with g(0) = 1).

One possible choice is g(v) = e−
v2

K2 where K, a parameter to be judiciously chosen, determines

the rate of decay and thus the extent of smoothing of Ut(~x) for a given gradient size. Because

of space limitations, mathematical details as well as numerous other improvements on the

P-M equation will not be discussed and deferred for instance to [89].

To solve Eq. (3.2.1), we use the stochastic interpretation, where the underlying particle

motion is a Brownian motion, and for which, according to Th. 3 and Th. 6 of Chapter 1, we

proceed to write

Ut(~x) = E0,~x(f(X̂t)), (3.2.3)

with UT (~x) = f(~x). We also write

Ut(~x) = E(f(X̂st(~x)))
4
= Et,~x(f(X̂st)), (3.2.4)

where Et,~x specifies that the inverse diffusion X̂st is beginning from ~x at time t. namely,

U(t, ~x) = f(~x) is the initial data, and for a specific infinitesimal operator, such as Lt is

a Laplacian operator, we have X̂t = Bt, this is due to the homogenous and symmetric

properties of Brownian motion. However, for most processes that don’t have these properties,

1The variable t in this context and throughout, represents scale instead of time.
2Note that many good techniques have since appeared, and to the best of our knowledge, all are prone

to the same over-smoothing problem which is addressed herein.
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Eq. (3.2.4) is an adaptive probability solution. In particular, we obtain one step transition

as

U(t, ~x) = Et,~x(f(X̂st))

=

∫
Et−τ,y(f(X̂s(t−τ)))p(τ, ~x, ~y)d~y

=

∫
U(t− τ , ~y)Pτ (~y|~x)d~y. (3.2.5)

Note that the above diffusion X̂t is a backward diffusion which, as mentioned in Chapter

1, is treated as a forward diffusion for ease of exposition and in the interest of clarity. The

probability Pτ (~y|~x) should then be interpreted as P (X̂t−τ = ~y|X̂t = ~x) for a homogenous

process and to emphasize the backward evolution in time/scale.

3.3 Nonlinear Diffusion on a Lattice

In light of the foregoing development, and for better insight and intuitive clarity, we find it

useful to carry out most of the exposition and the analysis in a discrete setting and hence

carry out the computation on a discrete lattice. Prior to delving into our formulation and

interpretation of a Non-Linear (NL) diffusion, we present an illustrative example where the

so-called controlled diffusion leads to a Markov Chain following an an optimization problem.

3.3.1 Discrete Approximation of Diffusion

As previously noted, our chief interest here is to propose a framework within which a stochas-

tic interpretation of a diffusion (or more generally of the so-called scale space analysis) is

achieved, and is in turn, instrumental in gaining insight. Towards that end and to further

extend and possibly improve on existing techniques, we begin by discretizing the space as

well as the scale/time variables.

Recall that a symmetric one-dimensional (1-D) random walk is well known to converge to

a Brownian motion as τ → 0 and δ → 0, with τ, δ respectively denoting scale and distance

discrete step size. A particle following such a trajectory will move on a 1-D lattice with

probability 1/2 to the left or to the right, while on a 2-D plane, it will move to any of the
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four nearest neighbors (east, west, north, south) with equal probability of 1/4. Formally, in

2-D space, we write the spatial variable (x1i, x2i) = (x1 + iδ, x2 + iδ) with i ∈ Z and the

scale tn = nτ with n ∈ N, we denote the one step transition probability of a particle from

initial position (x0
1, x

0
2) to (x1, x2) at the nth scale step, by pn((x0

1, x
0
2), (x1, x2)). As a result,

we obtain a standard form from Eq. (2.2.14), namely the probability of a particle being at

(x1, x2) at scale/time (n + 1)st step as τ → 0 and δ → 0,

Proposition 1. The following discrete equation,

pn+1((x
0
1, x

0
2), (x1, x2)) = 1

4
pn((x0

1, x
0
2), (x1 − δ, x2) + 1

4
pn((x0

1, x
0
2), (x1 + δ, x2))

+1
4
pn((x0

1, x
0
2), (x1, x2 − δ)) + 1

4
pn((x0

1, x
0
2), (x1, x2 + δ))

(3.3.1)

converges to

∂pt((x
0
1, x

0
2), (x1, x2))

∂t
=

∂2pt((x
0
1, x

0
2), (x1, x2))

∂x2
1

+
∂2pt((x

0
1, x

0
2), (x1, x2))

∂x2
2

(3.3.2)

Proof : Subtracting pn((x0
1, x

0
2), (x1, x2)) from both sides of Eq. (3.3.1) and dividing it by

τ , we obtain

[pn+1((x
0
1, x

0
2), (x1, x2))− pn((x0

1, x
0
2), (x1, x2))]/τ =

1

4τ

[
pn((x0

1, x
0
2), (x1 − δ, x2)) − 2pn((x0

1, x
0
2), (x1, x2)) +

pn((x0
1, x

0
2), (x1 + δ, x2))

]
+

1

4τ

[
pn((x0

1, x
0
2), (x1, x2 − δ)) − 2pn((x0

1, x
0
2), (x1, x2)) +

pn((x0
1, x

0
2), (x1, x2 + δ))

]

which upon letting τ = δ2/4 and δ → 0, concludes the proof.

With numerical implementation of a linear diffusion in hand, we proceed to consider a

1-D Brownian motion on a compact interval. By defining a reflecting wall on this interval, we

make the resulting Markov Chain(MC) aperiodic and recurrent with a solution to ∆U(~x) =
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0, UT (~x) = f(~x) taking the form U(~x) = E~x(f(XT )). This also implies a discrete solution

U(~x) =
∑

i

pif(xi) where pi is the probability of a particle to be in state i as t grows large.

The independence of the solution U(~x) of the initial state, implies its convergence to some

mean value of of f(~x) as ~x is averaged over all possible paths. This in a sense provides an

intuitive justification for the convergence of a heat equation to a constant. A case in point

arises when we are faced with a deterministic diffusion Xt, which is alternatively expressed as

dXt = (1 0)dt. The corresponding solution obtained from Eq. (3.1.3) is U(~x) = f(x0
1 + t, x0

2)

where ~x0 = (x0
1, x

0
2) is the initial state, clearly non-constant as expected.

3.3.2 Finite Markov Chain Example

Let a finite Markov chain [27] as in Fig. 3.1 with three possible states α, β, γ with respective

costs 1, 2, 3. Our goal is to select a “best” strategy (minimum cost) for a particle to make

a two-step transition from a state, say α. The corresponding transition probabilities are

obtained from the following sets of strategies:

Gα = {(1
2
, 0,

1

2
), (

1

2
,
1

2
, 0)}

Gβ = {(1
3
, 0,

2

3
), (

3

4
,
1

4
, 0)}

Gγ = {(1, 0, 0), (
1

2
, 0,

1

2
), (

1

3
, 0,

2

3
)}.

For state α for instance, two choices are possible:

• the first strategy has it move to state γ with probability 1
2
, and remain stationary with

probability 1
2
,

• the second lets it move to state β with probability 1
2

and remain stationary with

probability 1
2
.

Taking into account the respective costs as well as the transition probabilities, an optimal

strategy for α is determined to be (1
2
, 1

2
, 0) with a minimum cost of 3

2
, while in state β a

cost of 5
4

with the strategy (3
4
, 1

4
, 0), and in state γ we obtain a cost of 1 with strategy

(1, 0, 0). A second step transition may be similarly found, with respective costs for α, β, γ, of
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Figure 3.1: Finite Controlled Markov Chain modelling.

5
4
, 7

6
, 7

6
resulting from (1

2
, 0, 1

2
), (1

3
, 0, 2

3
), (1

3
, 0, 2

3
) respectively. This process may be continued

indefinitely.

Note that more complex strategies are possible and may be constructed for the interme-

diate steps, e.g., variable strategies along the steps, etc.. When, on the other hand, a given

strategy set only depends on the previous state, it is referred to as a Markov strategy. It

is also clear from the foregoing example that the resulting process, by way of its transition

strategy, influences the overall mean value.

This example provides a motivation to pursue such an approach of controlling diffu-

sion(drift and diffusion coefficients) and sufficient evidence for it to be a promising and

systematic way of addressing problems in image enhancement/segmentation, and shedding

light on the current outstanding problems in nonlinear diffusion.

3.3.3 Discrete Time/Scale Evolution

By discretizing ~x and t, we can account for a reverse time evolution by relabelling time

“t− τ” by 1 (or τ) and “t−nτ” by n ( or nτ ), hence making a backward diffusion equation

look more like a forward diffusion. We denote by Un(~x) the value of the solution at time
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step nτ and location/state ~x. Eq. (3.2.5) can then be written in the form,

Un+1(~x) =
∑

~y

Un(~y)Pn+1(~y|~x). (3.3.3)

where Pn+1(~y|~x) denotes the probability for a particle to move to ~y at step n + 1 with an

initial position ~x at step n. Since the solution to Eq. (3.3.2) is a Gaussian transition density

function, it characterizes the evolution of a particle along a Brownian trajectory starting at

~x0 and time t. Using the fact that a limiting process of a random walk is a Brownian motion,

we may compute the solution to Eq. (3.3.3) at any desired discrete time/scale. At the first

time step τ and for a 1-D case, we can write

U1(x) =
1

2
f(x− δ) +

1

2
f(x + δ), (3.3.4)

while in a 2-D scenario, we have

U1(x1, x2) =
1

4
f(x1 − δ, x2) +

1

4
f(x1 + δ, x2) +

1

4
f(x1, x2 − δ) +

1

4
f(x1, x2 + δ),

(3.3.5)

both of which are the result of an averaging process. More generally, we can respectively

write the 1-D and 2-D solutions to the linear heat equation as discrete expectations

Un+1(x) =
1

2
Un(x− δ) +

1

2
Un(x + δ), (3.3.6)

Un+1(x1, x2) =
1

4
Un(x1 − δ, x2) +

1

4
Un(x1 + δ, x2) +

1

4
Un(x1, x2 − δ) +

1

4
Un(x1, x2 + δ) (3.3.7)

Due to the underlying random walker moving to its neighbor with probability 1/2 in 1-D

(and to its four nearest neighbors with probability 1/4 in 2-D), it is clear that the linear

evolution will indiscriminately smooth away sharp features along with the noise.

3.3.4 A Stochastic View of Perona-Malik Equation

As noted earlier, a linear stochastic differential equation leads to a linear diffusion by way

of a Laplacian as its corresponding infinitesimal generator. Using this development as an
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inspiration together with its discrete stochastic formulation and interpretation, we proceed

in an analogous manner to rewrite the P-M equation to be interpreted as a particle-based

diffusion.

Proposition 2. Based on a particle system interpretation, P-M equation may be rewritten

as

Un+1(x) = pn+1(x, x + δ)Un(x + δ) + pn+1(x, x− δ)Un(x− δ) +

[1− pn+1(x, x + δ) + pn+1(x, x− δ)]Un(x). (3.3.8)

Proof : The proof follows immediately from discretizing Eq. (5.2.1) and rewriting

1/2g (| Un(x± δ)− Un(x) |) = pn+1(x, x ± δ) = pn+1(ξn+1 = x ± δ | ξn = x) to denote the

transition probability of a Markov chain
{
ξ(·)

}
to move from state x to state x± δ.

A similar expression for a 2-D signal (image) may be written as

Un+1(x1, x2)

= pn+1
S (x1, x2)Un(x1 + δ, x2) + pn+1

N (x1, x2)Un(x1 − δ, x2)

+pn+1
E (x1, x2)Un(x1, x2 + δ) + pn+1

W (x1, x2)Un(x1, x2 − δ)

+ [1− pn+1
S (x1, x2)− pn+1

N (x1, x2)− pn+1
E (x1, x2)− pn+1

W (x1, x2)]Un(x1, x2),

(3.3.9)

where

pn+1
S (x1, x2) = pn+1

N (x1, x2) = pn+1
E (x1, x2) = pn+1

W (x1, x2) =
1

4
g (| ∇U |)

and

| ∇U |=
√
∇U2

1 +∇U2
2 +∇U2

3 +∇U2
4 (3.3.10)

∇U1 = Un(x1 + δ, x2)− Un(x1, x2)

∇U2 = Un(x1 − δ, x2)− Un(x1, x2)

∇U3 = Un(x1, x2 + δ)− Un(x1, x2)

∇U4 = Un(x1, x2 − δ)− Un(x1, x2)
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The probabilities pn+1
S (x1, x2) ( resp. pn+1

N (x1, x2), pn+1
E (x1, x2), pn+1

W (x1, x2), pn+1
S (x1, x2))

represent the transition probabilities of the underlying Markov chain ξn, i.e., pn+1
S (x1, x2) =

pS(ξn+1 = (x1 + δ, x2) | ξn = (x1, x2)) (similar expressions for other direction transition

probabilities). which says that activities of diffusion in 4 directions are uniform in the same

location but different and decided by the local gradient measure in different locations, the

variational functional for d(in special, d = 2) that corresponded to the P-M equation is given

as

E(u) =
1

2

∫

Rd

(
1− exp{− | ∇u |2 /K}) dx (3.3.11)

The widely used implementation of the PM-algorithm whose interpretation herein is given

below, is simpler and better adapted to image processing.

pn+1
S (x1, x2) =

1

4
g (| ∇U1 |) ,

pn+1
N (x1, x2) =

1

4
g (| ∇U2 |) ,

pn+1
E (x1, x2) =

1

4
g (| ∇U3 |) ,

pn+1
W (x1, x2) =

1

4
g (| ∇U4 |)

These equations are intuitively appealing, in that the random walk of a particle (or

pixel) (or the diffusion) ξn takes place, in each direction, according to the prevailing one

sided gradient at position (x1, x2) in any of the four directions. At time step n + 1, a

south (resp. north, east, west) moving walk takes place with probability pn+1
S (x1, x2) (resp.

pn+1
N (x1, x2), pn+1

E (x1, x2), p
n+1
W (x1, x2)), and the particle remains in place with probability

pn+1
0 (x) = 1− pn+1

S (x1, x2)− pn+1
N (x1, x2) −pn+1

E (x1, x2)− pn+1
W (x1, x2).

The variational formulation which yields the above measures in 2-D is

E(u) =
1

2

∫

Rd

d∑
i=1

(
1− exp

{
−

(
∂u

∂xi

)2

/K

})
dx (3.3.12)

Strictly speaking, This expression is different from that of P-M in Eq. (5.2.1) as only the

gradient of each individual component affects the transition. According to Eq. (2.4.1), we

have f(x1, x2, · · · , xd) = 1
2

∑d
i=1(1−e−x2

i /K), which, when used for E(u), yields the following
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Gateauex difference,

δE(u) =

∫

Ω

lim
λ→0

f(∇u + λ∇h)− f(∇u)

λ
dx

= −
∫

Ω

div(∇f(∇u))hdx (3.3.13)

using the derivative

f
′
i (x1, · · · , xd) =

xi

K
e−x2

i /K (3.3.14)

and neglecting the constant coefficient K on the right hand side of the formula, we have

div(∇f(u,∇u)) =
d∑

i=1

∂f ′i(∇u)

∂xi

=
d∑

i=1

∂

∂xi

(
∂u

∂xi

e
−( ∂u

∂xi
)2/K

)
. (3.3.15)

The corresponding steepest gradient descent is

∂u

∂t
=

d∑
i=1

∂

∂xi

(
∂u

∂xi

exp

{
−

(
∂u

∂xi

)2

/K

})
(3.3.16)

It is clear here that the transition probability of such a random walk is determined by

the gradient, inducing the desired control on the diffusion. This is in sharp contrast to the

linear diffusion where the random walk invariably takes place with a constant probability of

1/4. Note that while the derivation of an exact SDE corresponding to P-M equation as an

infinitesimal generator, is interesting in it and of itself, a more complex system of particles

which is of little relevance to our stated goal in this paper, is required.

3.4 Two Sided Gradient-Driven Diffusion

As discussed in Section 2, at each scale of our analysis, the mean value of the process U(·, ·)
is evaluated as a result of a non-homogeneous random walk with the transition probability

controlled by the underlying process at the previous scale. In addition, and to avoid poten-

tial stability problems, we ensure that the probability of a jump of a particle (pixel) farther



CHAPTER 3. NONLINEAR CONTROLLED DIFFUSION 28

than an immediate neighbor is zero, which effectively emulates a continuous diffusion. Fur-

thermore, we ensure that there always be a one step transition of a particle to its neighbors

to avoid a slowdown in convergence due to likely stationary states [56]. We thus adopt this

paradigm to construct a non-homogeneous Markov chain whose transition probabilities are

based on the current particle states and their functional value. This results in a set of con-

secutive transition steps through scales, each in a sense, defining a new random process with

a new probability transition.

While the goal in signal/image processing is to maximally smooth out the noise, we are

also keen on achieving a solution that is as faithful as possible to the initial underlying

signal. To thus help better localize the homogeneous regions together with their boundaries,

we use in our transition dynamics a bidirectional gradient-based “probability measure”. (sub-

gradient in continuous space). Using the Szökefalvi-Nagy’s inequality[72], to optimize the

gradient energy (to delineate regions), we have to minimize the following energy expression,

E(Un+1) =
∑

x

E(Un+1(x))

=
∑

x

[(Un(x + δ)− Un(x))(Un+1(x)− Un(x− δ))]2

+ [(Un(x− δ)− Un(x))(Un+1(x)− Un(x + δ))]2 (3.4.1)

where Un+1(x), assumed to result from Eq. (3.2.5) is written as,

Un+1(x) = P n+1(x, x− δ)Un(x− δ) + P n+1(x, x + δ)Un(x + δ) (3.4.2)

with P n+1(x, x − δ) + P n+1(x, x + δ) = 1. Minimizing Eq. (3.4.1) entails an appropriate

choice of a probability measure as follows,

Theorem 8. The transition probability solving Eq. (3.4.1) is given by P n+1(x, x − δ) =

P{ξn+1 = x− δ|ξn = x} with

P n+1(x, x− δ) =
| Un(x + δ)− Un(x) |2

| Un(x− δ)− Un(x) |2 + | Un(x + δ)− Un(x) |2 , (3.4.3)

where Un+1(x) satisfies Eq. (3.4.2).



CHAPTER 3. NONLINEAR CONTROLLED DIFFUSION 29

(See Appendix A for a proof).

For a 2-D image, we denote the transition probability by pn+1
S (x1, x2) = P{ξn+1 = (x1 +

δ, x2)|ξn = (x1, x2)} (similarly for other probabilities) and obtain the following expression

for the transition probability

pn+1
S (x1, x2) =

N
S +N + E +W , (3.4.4)

where
N = | Un(x1 − δ, x2)− Un(x1, x2) |2,
S = | Un(x1 + δ, x2)− Un(x1, x2) |2,
E = | Un(x1, x2 + δ)− Un(x1, x2) |2,
W = | Un(x1, x2 − δ)− Un(x1, x2) |2 .

Using the above transition probability, our newly proposed diffusion is written as

Un+1(x1, x2) = Un(x1 + δ, x2)p
n+1
S (x1, x2) + Un(x1 − δ, x2)p

n+1
N (x1, x2)

Un(x1, x2 + δ)pn+1
E (x1, x2) + Un(x1, x2 − δ)pn+1

W (x1, x2)

(3.4.5)

3.5 Discussion

As noted in the previous section, the P-M diffusion is driven by a one-sided gradient at any

position x, which implies that weak smoothing takes place in the presence of a relatively

high gradient, even if the latter is caused by noise. On the other hand, when we consider

a two sided gradient at a position (x1, x2), we are better able to identify a noise-induced

high gradient at that position, as it is likely to register a high value on both sides of the

pixel (x1, x2) under consideration. This would then allow us to discriminate between a

“true” high gradient and that caused by noise. This is in contrast to the P-M filter which

relies on a one-sided gradient which calls for a no transition state in the Markov chain, thus

preserving the prevailing singularity. Note that this technical difficulty of the P-M equation

may further be compounded in that the transition policy in the Markov chain may eliminate

true edges; since at a position ~x close to the leading edge of a signal, and if at position

(x1 + δ, x2), U(·, x1, x2) is close to U(·, x1 + δ, x2), the probability of transition is finite, and
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the smoothing of this leading edge takes place. This scenario is a zero measure event when

a two sided gradient-based transition probability is used in the policy.

Using a Markov chain {ξn}, we can thus model these dynamics via transition probabilities

which, as we mentioned, may be specified in terms of the ratio of a bidirectional gradient.

We should note that in the cases where the sub-gradients are very small, and hence little

significance can be attached to their ratio, the motion of the particle is based on a symmetric

random walk, i.e., with a 1/4 probability it moves to the four nearest neighbors, hence leading

to a linear heat-like equation.

When on the other hand, we use a two-sided gradient, a discontinuity arises and the two

gradients are very different, at least one of them grows large which blocks the diffusion in

the other direction. It can also be seen from the transition probability expressions that the

diffusion is driven to zero when a plateau is reached, i.e., a stable/fixed point at a staircase

function [49].

3.6 Experimental Results

Our goal in this section is to substantiate the results that we have established in the previous

sections. The stabilization of the proposed diffusion at staircase functions together with the

subsequent denoising and segmentation effects are first demonstrated by running a noise free

signal/image which remains unaffected by the diffusion as displayed in Figure 3.3.

To establish a basis for performance comparison with the P-M equation which, recall,

was the source of inspiration for our proposed technique, we run experiments where both

visual as well as quantitative assessments are inferred. The denoising performance can be

evaluated visually as shown in Figures (3.4, 3.5, 3.6). Figure 3.4 demonstrates a segmenta-

tion/denoising of an infra-red real image of a boat, run to similar time/scale for both P-M

and our proposed technique. This class of images is well known for posing great challenges

to simple gradient-based segmentation and/or linear filtering, and this is for the most part

due to their impulsive nature. The results of such approaches usually results in visually

unpleasant and quantitatively inaccurate results if at all. In Fig. 3.6, the potential for a
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Figure 3.2: Noisy signal filtered by our random walk algorithm and PM algorithm.

complete diffusion (for a non-optimal choice of the threshold parameter in the P-M equa-

tion) is demonstrated whereas and as shown above, the new approach will stabilize with no

parameter adjustment. For a well known stopping time and well chosen parameter, P-M

approach performs quite well. This may, however, turn out to be a limitation for a number

of real applications, as it is generally not known what the image consists of.

In Fig. 3.7 an enhancement/deblurring-like effect using our algorithm is also demon-

strated for a checker board. The cost of doing away with the explicit knowledge of the

stopping time for our approach, is the arising block effects which, although common to

many existing techniques, remain a drawback. Although this may be fine tuned away for

pure denoising purposes, we discuss in the next chapter techniques which specifically ad-

dress such a shortcoming. In Fig. 3.7, a de-blurring example is shown, demonstrating the

capacity of the algorithm to enhance edges and again to stabilize at staircase functions. In

Figure( 3.8),( 3.9) we demonstrate denoising and segmentation results of images, which can

serve as a comparison of our new algorithm and the P-M algorithm.

For establishing a more quantitative measure of performance we use the figures in Fig-

ure 3.10. A pixel deviation is computed and an error rate is defined as an unmatched

segment( in the meaning of region segment) between filtered image( or noisy image) and
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Figure 3.3: Stable signal remains unchanged following proposed nonlinear diffusion.

clear image. the error rate curve which is consistent with our visual assessment is displayed

in Fig. 3.11.

3.7 Conclusion

The proposed stochastic interpretation together with its link to controlled diffusion are shown

to not only explicate existing techniques and their limitations, but to also provide sufficient

insight to develop other novel physically and geometrically driven methodologies. We have

also succeeded in resolving in part, a well known and long standing problem of unknown

stopping criterion.
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3.8 Appendix A

Proof : We first proceed to re-express E(Un+1) in terms of Eq. (3.4.2) and Pn+1(x, x + δ) =

1− Pn+1(x, x− δ). By subsequently differentiating with respect to Pn(x, x− δ) and bearing

in mind that a two sided-gradient is used, we have the following equation

∂(E(Un+1))/∂Pn+1(x, x− δ)

= 2[(Un(x + δ)− Un(x))2(Un+1(x)− Un(x− δ))](∂Un+1(x))/∂Pn+1(x, x− δ)

+ 2[(Un(x− δ)− Un(x))2(Un+1(x)− Un(x + δ))](∂Un+1(x))/∂Pn+1(x, x− δ)

(3.8.1)

Setting ∂(E(Un+1))/∂Pn+1(x, x − δ) = 0 , and assuming a non-degenerate case of

∂Un+1(x)/∂Pn+1(x, x− δ) 6= 0, the optimal transition probability at the n-th step implies

[(Un(x + δ)− Un(x))2 + (Un(x− δ)− Un(x))2]Un+1(x)

= (Un(x + δ)− Un(x))2Un(x− δ) + (Un(x− δ)− Un(x))2Un(x + δ) (3.8.2)

where the replacement of Un+1(x) with Eq. (3.4.2) will reduce to Eq. (3.4.3). Note that

if ∂Un+1(x)/∂Pn+1(x, x − δ) = 0, we can see that a left sided-gradient is equal to the right

sided-gradient resulting in an optimal choice of probability of 1/2.
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Figure 3.4: A noisy image together with its enhanced copy by the proposed algorithm and
by the P-M method best result.
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Figure 3.5: Complete Smoothing vs Stability.
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Figure 3.6: PM algorithm.

Sinusoid Image Filtered Sinusoid Image

Figure 3.7: Checker Board Enhancement.
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Filtered Image Segmented ImageNoisy Image

Figure 3.8: tools segmentation.

Clear house image Noisy house image Filtered house image

Segment clear image Segment noisy image Segment filtered image

Figure 3.9: House segmentation.
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Clear circle image segment of clear circle image

Noisy circle image segment of noisy circle image

Filtered image of noisy circle Segment of filtered noisy circle image

Figure 3.10: Circle segmentation.



CHAPTER 3. NONLINEAR CONTROLLED DIFFUSION 39

0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Segmentation error rate compared for several methods

Signal to noise ratio

S
eg

m
en

ta
tio

n 
er

ro
r 

ra
te

PM: iters=20k
PM:iters=500
Our New Algorithm: iters=20k
Direct segment noisy image
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Chapter 4

Multiscale Wavelet space

Wavelet as a local signal analysis tool plays a very important role in obtaining detail informa-

tion about signal structures. In this chapter, we introduce some basic facts about wavelets

that would be useful for next chapter. Further details may be found in [66].

4.1 Definition of a Wavelet

Let L2(R) be a space of functions f(x), x ∈ R, such that

||f ||2 =

√∫
|f(x)|2dx < +∞ (4.1.1)

where the integral ||f ||2 defines a norm of L2(R), and is also denoted by ||f || in this thesis.

A wavelet, also known as a mother wavelet, is a function ψ(x) ∈ L2(R) that is centered

in the neighborhood of x with ||ψ|| = 1 and zero mean:

∫ +∞

−∞
ψ(x)dx = 0 (4.1.2)

In the spectral domain, we denote by ψ̂(ω) the Fourier transform of ψ(x), and by |ψ̂(ω)|
the amplitude of ψ̂(ω). The mother wavelet may be interpreted as the impulse response of

a band-pass filter since ψ̂(0) =
∫ +∞
−∞ ψ(x)dx = 0. The mother wavelet is defined jointly with

a scaling function (also called father wavelet), who’s mean is non-vanishing and which has a

40
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corresponding low-pass filter impulse response, namely φ ∈ L2(R) with

∫ +∞

−∞
φ(x)dx = 1. (4.1.3)

its Fourier transform also satisfies,

|φ̂(ω)|2 =

∫ +∞

1

|ψ̂(sω)|2ds

s
=

∫ +∞

ω

|ψ̂(ξ)|2
ξ

dξ (4.1.4)

By dilating and translating a wavelet function, we obtain a family of wavelet atoms

ψu,s(x) =
1√
s
ψ

(
x− u

s

)

with ||ψu,s|| = 1. The wavelet transform of a function f ∈ L2(R) at u and s is defined as

Wf(u, s) =< f, ψu,s >=

∫ +∞

−∞
f(x)

1√
s
ψ

(
x− u

s

)
dx = f ∗ ψ̄s(u) (4.1.5)

with

ψ̄s(u) = ψs(−u) =
1√
s
ψ

(−u

s

)
. (4.1.6)

Wf(u, s) measures the variation of f in a neighborhood of u, whose size is proportional to

s.

Similarly, a family of scaling atoms may be generated as

φu,s(x) =
1√
s
φ

(
x− u

s

)

whose transform at u and s

Lf(u, s) =< f, φu,s >=

∫ +∞

−∞
f(x)

1√
s
φ

(
x− u

s

)
dx (4.1.7)

provides the low-frequency approximation of f at the scale s in a neighborhood of u.

By the low-pass and band-pass filters’ properties, the wavelet and scaling atoms play an

important role in generating bases of the approximation and detail spaces as shown in the

following sections.
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4.2 Wavelet frames

The frame theory was originally developed by Duffin and Schaeffer [24] to reconstruct a band-

limited signal f from irregularly spaced samples {f(tn)}n∈Z . A frame is a family of vector

{φn}n∈Γ in a space that characterizes any signal f from its inner products {< f, φn >}n∈Γ,

where Γ is an index set. The formal definition of a frame is

Definition 3. (Definition of Frame): The sequence {φn}n∈Γ is a frame of a Hilbert space H

if there exist two constants A and B such that for any f ∈ H

A||f ||2 ≤
∑
n∈Γ

| < f, φn > |2 ≤ B||f ||2 (4.2.1)

when A = B, the frame is said to be tight. Obviously one can see that an orthonormal basis

is a tight frame with A = B = 1. These bounds may also display the redundancy of a frame

representation of a signal. An operator U defined by U : Uf [n] =< f, φn >, ∀ n ∈ Γ is

called a frame operator.

With {φn}n∈Γ denoting a frame, the sampling observed data represent coefficients, whose

reconstruction is carried out using a dual frame {φ̃n}n∈Γ defined by

φ̃n = (U∗U)−1φn, (4.2.2)

to yield f as

f =
∑
n∈Γ

< f, φn > φ̃n. (4.2.3)

If the frame {φn}n∈Γ is tight, then the dual frame {φ̂n} is equal to {φn} with a scaling

difference, which generally simplifies the numerical implementation of a frame decomposition

and explains its wider acceptance.

Wavelet frames are constructed by starting with a continuous wavelet transform whose

translation and scale parameters are appropriately sampled to cover the time-frequency

plane with corresponding discrete wavelet family. To obtain a full cover, we sample the scale

parameter s along an exponential sequence {aj}j∈Z , with a sufficiently small dilation step

a > 1. The time translation u is sampled uniformly at intervals proportional to the scale aj,
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yielding

ψj,n(x) =
1√
aj

ψ

(
x− nu0a

j

aj

)
(4.2.4)

Necessary and sufficient conditions for {ψj,n}(j,n)∈Z2 to be a frame and have a dual frame

is stated ( see [21]). However, the sampling interval aju0 might cause a translation distortion

if its value is large compared to the rate of variations of f ∗ ψ̄aj(t). To construct a translation

invariant wavelet representation, the scale s is discretized while the translation parameter u

is not. The scale is sampled along a dyadic sequence {2j}j∈Z . The dyadic wavelet transform

of f ∈ L2(R) is defined by

Wf(u, 2j) =< f, ψu,2j >=

∫ +∞

−∞
f(x)

1√
2j

ψ

(
x− u

2j

)
dx = f ∗ ψ̄2j(u) (4.2.5)

with

ψ̄2j(u) = ψ2j(−u) =
1√
2j

ψ

(−u

2j

)
. (4.2.6)

It can be shown that the normalized dyadic wavelet transform operator Uf(j, u) = Wf(u, 2j)

satisfies frame inequalities and a reconstructing wavelet ψ̃ may be constructed. In practice,

we need to compute a discrete dyadic wavelet transform, which may be carried out by a fast

filter bank algorithm for an appropriately designed wavelet and described as follows.

4.3 Wavelet basis

A wavelet dilated by 2j and translated by 2jn for all (j, n) ∈ Z∈ generates an orthonormal

basis of L2(R) but distribution information at different resolutions. This is intimately related

to multi-resolution signal approximation defined below.
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Definition 4. A sequence (Vj)j∈Z of closed subspaces of L2(R) is a multi-resolution approx-

imation if the following 6 properties are satisfied:

∀ (j, k) ∈ Z2, f(t) ∈ Vj ↔ f(t− 2jk) ∈ Vj,

∀ j ∈ Z, Vj+1 ⊂ Vj,

∀ j ∈ Z, f(t) ∈ Vj ↔ f(t/2) ∈ Vj+1,

limj→+∞ Vj = ∩+∞
j=−∞Vj = {0},

limj→−∞ Vj = Closure
(∪+∞

j=−∞Vj

)
= L2(R).

There exists θ such that θ(t− n)n∈Z is a Riesz basis 1 of V0.

We need to mention that Vj characterizes the signal approximation at the resolution 2−j,

The approximation of f on Vj is defined as the orthogonal projection PVj
f of function f onto

the space Vj.

In order for a family {θ(t−n)}n∈Z to be a Riesz basis of the space V0, the necessary and

sufficient condition is there exist A > 0, B > 0, such that

1

B
≤

+∞∑

k=−∞
|θ̂(ω − 2kπ)|2 ≤ 1

A
. (4.3.1)

This yields the construction of a scaling function φ through Fourier transform of θ(t)

φ̂(ω) =
θ̂(ω)

(
∑+∞

k=−∞ |θ̂(ω − 2kπ)|2)1/2
, (4.3.2)

for which we denote

φj,n(t) =
1√
2j

φ

(
t− 2jn

2j

)
. (4.3.3)

Scaling atoms {φj,n}n∈Z defined above normally span a multi-resolution approximation

space Vj. As we know that Vj ⊂ Vj−1, let Wj be the orthogonal complement of Vj in Vj−1:

Vj−1 = Vj ⊕Wj

the orthogonal projection of f on Vj−1 can be further decomposed as

PVj−1
f = PVj

f ⊕ PWj
f.

1Definition of Riesz basis can be found in [66].
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The complement PWj
f provides further ”details” of f at scale 2j and one can construct

an orthonormal basis of Wj by wavelet atoms {ψj,n}n∈Z , which are obtained by sampling u

and s on a 2j grid,

ψj,n(x) =
1√
2j

ψ

(
x− 2jn

2j

)
. (4.3.4)

With {φj,n}n∈Z and {ψj,n}n∈Z as the orthonormal bases of Vj and Wj, the coefficients of

f in these spaces are given by

aj[n] =< f, φj,n > and dj[n] =< f, ψj,n > (4.3.5)

The orthogonal projection of f over Vj and Wj are therefore obtained in the following

expressions,

PVj
f =

∞∑
n=−∞

< f, φj,n > φj,n =
∞∑

n=−∞
aj[n]φj,n,

PWj
f =

∞∑
n=−∞

< f, ψj,n > ψj,n =
∞∑

n=−∞
dj[n]ψj,n. (4.3.6)

A multi-resolution approximation {Vj}j∈Z is entirely characterized by the scaling function

φ that generates an orthonormal basis for each space Vj, This may in turn be shown to be

implemented by a conjugate mirror filter.

4.3.1 Wavelet design: Connection to conjugate mirror filters

Let h and g be a pair of finite impulse response filters, h is a low-pass filter whose transfer

function satisfies ĥ(0) =
√

2, where ĥ(ω) =
∑+∞

n=−∞ h[n]e−inω is the Fourier series of the

discrete filter h[n].

Mallat[64] and Meyer[69] point out that, for an integrable scaling function, the Fourier

series of h[n] satisfies

|ĥ(ω)|2 + |ĥ(ω + π)|2 = 2, ∀ω ∈ R (4.3.7)

and

ĥ(0) =
√

2. (4.3.8)

A discrete filter whose Fourier series satisfies Eq.(4.3.7) is called a conjugate mirror filter.
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Conversely, they also give necessary conditions on which a scaling function can be con-

structed, namely, if ĥ(ω) is 2π periodic and continuously differentiable in a neighborhood of

ω = 0, and it satisfies Eq.(4.3.7) and Eq.(4.3.8), and if

inf
ω∈[−π/2,π/2]

|ĥ(ω)| > 0, (4.3.9)

then

φ̂(ω) =
+∞∏
p=1

ĥ(2−pω)√
2

=
1√
2
ĥ(

ω

2
)φ̂(

ω

2
) (4.3.10)

is the Fourier transform of a scaling function φ ∈ L2(R). Further, we can decompose

1√
2
φ(t/2) =

+∞∑
n=−∞

h[n]φ(t− n) (4.3.11)

with

h[n] =<
1√
2
φ(

t

2
), φ(t− n) > . (4.3.12)

Suppose that the Fourier transform of φ is finite, the corresponding wavelet ψ is defined

through a Fourier Transform as

ψ̂(ω) =
1√
2
ĝ(

ω

2
)φ̂(

ω

2
), (4.3.13)

with

ĝ(ω) = e−iωĥ∗(ω + π). (4.3.14)

The necessary and sufficient conditions on ĝ such that, for any scale 2j, {ψj,n(x)}n∈Z be

an orthonormal basis of Wj and {ψj,n}(j,n)∈Z2 be an orthonormal basis of L2(R) is

|ĝ(ω)|2 + |ĝ(ω + π)|2 = 2 (4.3.15)

and

ĝ(ω)ĥ∗(ω) + ĝ(ω + π)ĥ∗(ω + π) = 0. (4.3.16)

It is shown that ĝ(ω) is the Fourier series of

g[n] =<
1√
2
ψ(

t

2
), φ(t− n) >, (4.3.17)
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which are the decomposition coefficients of

1√
2
ψ(

t

2
) =

+∞∑
n=−∞

g[n]φ(t− n), (4.3.18)

for which, calculating the inverse Fourier transform of Eq.(4.3.14) yields

g[n] = (−1)1−nh[1− n] (4.3.19)

Therefore g is a high-pass conjugate mirror filter. The conjugate mirror filters h[n], g[n]

play an important role in the fast wavelet transform algorithm. A fast filter bank algorithm

is further introduced to calculate the coefficients of a signal measured at a finite resolution,

thus, the following formula is further proceeded to Eq. (4.3.5)

aj+1[p] =
+∞∑

n=−∞
h[n− 2p]aj[n]

dj+1[p] =
+∞∑

n=−∞
g[n− 2p]aj[n].

We can see that signals are decomposed into low-pass and high-pass components sub-

sampled by 2, and coefficient aj[p] may be reconstructed as

aj[p] =
+∞∑

n=−∞
h[p− 2n]aj+1[n] +

+∞∑
n=−∞

g[p− 2n]dj+1[n]

= ǎj+1 ? h[p] + ďj+1 ? g[p] (4.3.20)

where ” ? ” represents convolution and

x̌[n] =





x[k] if n = 2k

0 n = 2k + 1

4.3.2 Vanishing Moments vs. Support size of a wavelet

In order to parsimoniously represent a function f in a wavelet basis, fewer non-zero coeffi-

cients are desirable. This is depend on the regularity of the function f , and on choosing an

appropriate wavelet, namely, wavelet with specific vanishing moments and support size.
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A wavelet with n vanishing moments satisfies the following formula,

∫ +∞

−∞
xkψ(x)dx = 0, 0 ≤ k < n, (4.3.21)

which means that a wavelet ψ is orthogonal to any polynomial of degree up to n− 1. This

also leads to the following relation to its Fourier transform ψ̂,

∫ +∞

−∞
xkψ(x)dx = ikψ̂(k)(0) = 0, 0 ≤ k < n (4.3.22)

where i =
√−1. This property reveals that, if a wavelet ψ has n vanishing moments, ψ̂ and

its first n− 1 derivatives are 0 at ω = 0. Therefore, if f ∈ Cn, Cn is a collection of functions

which are n times continuously differentiable ( i.e. f can be well approximated by a Taylor

polynomial), then such an analyzing wavelet produces small amplitude coefficients at fine

scales and one can shown that the decay rate of |Wf(u, s)| across scales s is closely related

to the exponential degree of the Lipschitz regularity of f . This property is used to detect

singularities by finding abscissa where modulus maxima converge at fine scales, as discussed

in detail in [69, 45, 67].

One may also argue that the coefficients < f, ψj,n > may have large amplitudes if a

wavelet ψ has a large support, To therefore minimize the number of high amplitude coeffi-

cients, we need to reduce the support size of ψ as much as possible. The constraints imposed

on orthogonal wavelets imply that if ψ has p vanishing moments then its support is at least

of size 2p− 1 when choosing a particular wavelet [33, 88]. We hence face a tradeoff between

the number of vanishing moments and the support size.

4.4 Daubechies Wavelets

Daubechies wavelets have minimum size supports for any given vanishing moments of order

p. It is shown that the support sizes of a scaling function φ and a wavelet ψ are related to

the conjugate mirror filter h that are used to construct them. The scaling function ψ has a

compact support if and only if h has a compact support, and furthermore their support are

equal. If the support of h and φ is [N1, N2] then the support of ψ is [(N1−N2 + 1)/2, (N2−
N1 + 1)/2](see [64]). In addition, to ensure that a wavelet has p vanishing moments, the
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Fourier transform ĥ of the conjugate mirror filter h, which is used to construct ψ, must have

a zero of order p at ω = π, namely, ĥ(ω) can be written as

ĥ(ω) =
√

2

(
1 + e−iω

2

)p

R(e−iω), (4.4.1)

where R(e−iω) is a polynomial of minimum degree m such that ĥ satisfies

|ĥ(ω)|2 + |ĥ(ω + π)|2 = 2. (4.4.2)

As a result, h has N = m + p + 1 non-zero coefficients. Thus obtaining a minimum support

wavelet is equivalent to obtaining a minimum support h, and the minimum degree m of R

required is m = p− 1, see Daubechies[20].

Daubechies wavelets are constructed by choosing a minimum degree polynomial

R(e−iω) =
m∑

k=0

rke
−ikω = r0

m∏

k=0

(1− ake
−iω) (4.4.3)

such that |R(e−iω)|2 = P (sin2(ω/2)), where P (x) is a polynomial satisfying

(1− x)pP (x) + xpP (1− x) = 1 (4.4.4)

It turns out that Daubechies wavelets constructed above have a minimum size sup-

port equal to [−p + 1, p]. Daubechies wavelets are, however, very asymmetric, as shown

in Fig.(4.1).

Daubechies wavelets demonstrate that there is a tradeoff between vanishing moments and

the support size, specifically the higher the vanishing moments, the larger the support size.

The shortest support Daubechies wavelet is a Haar wavelet, which has a vanishing moment

of order 1.

4.5 Wavelet Packet

Instead of decomposing only the approximation spaces Vj to construct lower resolution ap-

proximation space Vj+1 and detail space Wj+1 by wavelet bases, we can also decompose the

detail space Wj into two subspaces, an approximation and a detail space. This calls for
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Figure 4.1: Daubechies scaling function φ (top) and wavelet ψ(bottom) with vanishing mo-
ments 2
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new bases, the so-called wavelet packets, due to Coifman, Meyer and Wickerhauser[79]. The

analysis may be interpreted as spectral partitioning.

If the signals are approximated at scale 2L, we can represent the recursive splitting of

vector spaces in a binary tree. The root of the tree is associated to the approximation space

VL. Denote W 0
L = VL, each node of the tree is labelled by (j, p), and is associated to a

detail space W p
j , where j − L ≥ 0 is the depth of the node in the tree , and p is the number

of nodes that are on its left at the same depth j − L. Therefore, the two children nodes of

(j, p) are orthogonal subspaces (Wavelet packet spaces) such that

W p
j = W 2p

j+1 ⊕W 2p+1
j+1

where W 2p
j+1 and W 2p+1

j+1 may be viewed as the approximation and detail spaces of W p
j and

the two wavelet packet orthogonal bases of the two children notes are defined as

ψ2p
j+1(t) =

+∞∑
n=−∞

h[n]ψp
j (t− 2jn) (4.5.1)

and

ψ2p+1
j+1 (t) =

+∞∑
n=−∞

g[n]ψp
j (t− 2jn) (4.5.2)

with

h[n] =< ψ2p
j+1(u), ψp

j (u− 2jn) >, g[n] =< ψ2p+1
j+1 (u), ψp

j (u− 2jn) > (4.5.3)

This recursive splitting defines a binary wavelet packet tree where each parent node is

divided into two orthogonal subspaces each with concentrated energy in different frequency

bins. The idea of wavelet packets generalizes the link between multiresolution approximations

and wavelets, and the designed bases for wavelet packets are well adapted to decomposing

signals that have different behavior in different frequency intervals, several specific wavelet

packet bases, such as cosine bases, block bases, lapped orthogonal bases, etc. are intensively

discussed, see[64, 92, 80, 79, 68, 65].



Chapter 5

Wavelet Frame-Based Nonlinear

Filtering

5.1 Introduction

In spite of the fact that the performance improvement as in Chapter 3 was remarkable, the

drawback was the loss of features such as texture which, in some class(other than those

investigated in [89]) of images is very important to preserve.

the nature of question which then follows and which is addressed in this chapter is whether

an efficient and effective filtering approach can be made feature (e.g. texture)preserves, here

we address this problem and show that using wavelet frames with wavelets of higher order

moments than Haar’s is tantamount to accounting for longer term correlation structure while

preserving the local focus. This hence yields an efficient tool in analyzing and enhancing

images with a careful account for texture information.

we explain a connection between the equation and the process to Haar wavelet coefficient

to establish a direct equivalence between a linear Heat equation and a Haar coefficients based

evolution.

In light of this derivation shown in Eq. 5.4.1, we proceed to generalize this connection

and in fact derive wavelet frame coefficients, this leads to a remarkable signal and image

52
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enhancement while preserved features which are important to other approaches, such as,

image classification etc.

5.2 Problem Statement

As noted above the Perona-Malik equation still enjoys a great deal of popularity for achieving

a selective nonlinear filtering, compatible with the desired objective of image filtering, namely

that homogeneous areas be maximally smoothed while edge contours be maximally preserved

(or equivalently minimally smoothed). It is expressed as

∂U(t, x)

∂t
= div (F (| ∇ (U(t, x)) |)∇U(t, x)) , (5.2.1)

where F(v) may be chosen as F(v) = e−
v2

K2 , K determines the rate of decay and thus the

extent of smoothing of U(t, x) for a given gradient size. Many other techniques have been

proposed with each addressing different aspects of the limitations of the above equation.

Specifically, one which addresses the stopping criterion problem [50, 49] may be written for

simplicity in a 1-D evolution as a Markov chain equation, see Eq.(3.4.2).

To the best of our knowledge, none of these techniques [89, 50] resolves the problem of

texture loss alluded to in the introduction. The fact that a first order difference implemen-

tation of a gradient in the selective filtering of an image is a main source of this loss may

easily be observed by the convergence of the data to staircase functions[49] and can be seen

in Fig. 5.1. Our goal in the sequel is in effect to lift this limitation by reinterpreting the first

difference implementation as a Haar wavelet coefficient and by subsequently seeking a more

regular wavelet implementation/approximation as we elaborate further next.

5.3 A Multiscale Approach to Scale-Space Analysis

Much of the research in nonlinear diffusion [89] has been carried out for the most part on

a parallel track to and with little interaction with all that had been pursued in wavelet or

multiresolution analysis. This is in spite of the fact that both approaches are very much

based on the notion of scale, and that both fully use information gleaned along it. Creative
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Figure 5.1: A profile of noisy Lenna image and filtered result with Random walk
algorithm[52].

and clever ideas germane to the two philosophies resulted, and distinct advantages and

limitations emerged. A natural question which then arises is on their interplay and on any

potential gain which may result if the synergy is exploited. Towards that end, we first recall

some facts about frames and their role in signal representations and subsequent filtrations.

5.4 Frame Representation and Reconstruction

As is well known, an image may be well represented in a Haar wavelet frame by obviating

the dyadic down-sampling step (i.e. a redundant representation) of the usual orthonormal

representation. While the latter representation is usually parsimonious and yields a perfect

reconstruction, it exhibits a visually noticeable loss of information in the course of additional

transformations such as coefficient thresholding for denoising or compression, etc. This

loss is particularly evident in an orthonormal representation with a short support analysis
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wavelet, and may be attributed to the fact that any given transformed coefficient has a

significant local influence and hence impact on the visual outcome . Smoothing by coefficient

thresholding which is usually popular in wavelet-based denoising [52, 50], is in contrast to

the softer and more progressive smoothing commonly encountered in nonlinear diffusion of

scale space filtering [75]. The redundancy of this continuous scale approach in some sense,

counterbalances the singular effect of an orthonormal wavelet coefficient.

Our goal in this section is to establish for a given signal an equivalence between smooth-

ing based on the Heat equation and that based on a diffusion-emulating transformation of

its frame coefficients. The wealth of available wavelet functions makes it possible for us to

optimize our desired ability to capture longer term (higher than Markov of order 1) correla-

tion information at a given spatial location in an image and to still preserve the local focus

critical to exploiting salient features in nonlinear filtering.

To proceed, let φ(x) be a scaling function with a compact support such that{φ(x− n)}n∈Z
is an orthonormal basis of V0, the space of observations. Its Fourier transform is φ̂(ω) =
1√
2
ĥ(ω

2
)φ̂(ω

2
), and consequently satisfies the multiresolution analysis framework [66]. Denote

by ψ(x) a function with a Fourier transform ψ̂(ω) =
1√
2
ĝ(ω

2
)φ̂(ω

2
) i.e., a corresponding and

so-called mother wavelet. As is well known [66], we can write

1√
2
φ(x

2
) =

+∞∑
−∞

h(n)φ(x− n);
1√
2
ψ(x

2
) =

+∞∑
−∞

g(n)φ(x− n),

where {h(n)}n∈N and {g(n)}n∈N with Fourier transforms ĥ(ω), ĝ(ω) satisfy the complemen-

tarity property ĝ(ω) = e−iωĥ∗(ω + π).

Define




φj,n(x) = 1√
2j

φ

(
x− 2j−1n

2j

)

ψj,n(x) = 1√
2j

ψ

(
x− 2j−1n

2j

)

with {φj,n(x)} and {ψj,n(x)} as tight frames of Vj and Wj (the so-called approximation

and detail subspaces). It follows that {φj,2n(x)} and {φj,2n+1(x)} as well as {ψj,2n(x)} and

{ψj,2n+1(x)} are respectively orthonormal bases of Vj and Wj. With the selected functions

in hand, and upon obtaining a frame representation of a signal, we first proceed to show



CHAPTER 5. WAVELET FRAME-BASED NONLINEAR FILTERING 56

how it may be used to implement a linear filter equivalent to that achieved by a linear heat

equation.

Proposition 3. The numerical implementation of a diffusion effect of Laplacian ∆(·)operating

on a signal U(x) (as in the linear heat equation), may be achieved by an iterative subtraction

of the highest detail (also referred to as detail of detail) contribution of a Haar wavelet packet

frame representation of the signal.

U(n + 1, x) = U(n, x)− (−1

2
Udd(n, x− 1))

= U(n, x) +
1

2
Udd(n, x− 1) (5.4.1)

Prior to proving this proposition, we have to establish the following two lemma.

Lemma 1. If we are given a function f(x) together with its frame representation coefficients,

aj(n) =< f, φj,n > and dj(n) =< f, ψj,n >

in a tight frame {φj,n(x)}, {ψj,n(x)}, (n, j) ∈ Z the following formulae yield

aj+1(p) =
+∞∑
−∞

h(n− p)aj(n) and

dj+1(p) =
+∞∑
−∞

g(n− p)aj(n), (5.4.2)

with either of the following two reconstructions for aj(p)

aj(p) =
+∞∑
−∞

aj+1(2n)h(p− 2n) +
+∞∑
−∞

dj+1(2n)g(p− 2n) (5.4.3)

or

aj(p) =
+∞∑
−∞

aj+1(2n + 1)h(p− 2n− 1)+
+∞∑
−∞

dj+1(2n + 1)g(p− 2n− 1) (5.4.4)
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Proof: The proof is immediate by noting that

< φj,p, φj,2n >

=

∫
1√
2j+1

φ

(
x− 2jp

2j+1

)
1√
2j

φ

(
x− 2jn

2j

)
dx

=

∫
1√
2
φ

(
u− p

2

)
φ(u− n)du

= h(n− p), (5.4.5)

and similarly < ψj+1,p, φj,2n >= g(n− p).

Recall that our goal is to establish a direct relationship between a linear diffusion filter and

its numerical implementation in a wavelet domain. The space/time invariance property of the

linear diffusion imposes a frame-based representation of a signal being analyzed. The choice

of a wavelet frame representation for this purpose is further justified by the intrinsic analytic

property of wavelets for focusing useful energy ( e.g. of the desired signal) in relatively few

coefficients and for spreading that of the noise over many coefficients. This consequently

indicates that an efficient and systematic multiscale representation with a sufficient and

flexible spectral redundancy may result. Towards that end, we start by stating the following,

Lemma 2. The detail space Wj can be expressed as a direct sum of two subspaces Wj =

Vj,L

⊕
Wj,L. Defining

ψa
j,p(x) =

+∞∑
−∞

h(n− p)ψj,n(x) and

ψd
j,p(x) =

+∞∑
−∞

g(n− p)ψj,n(x), (5.4.6)

{ψa
j,p(x)} and {ψd

j,p(x)} are respectively frames of Vj,L,Wj,L while

({ψa
j,2n(x)}, {ψd

j,2n(x)}) and ({ψa
j,2n+1(x)}, {ψd

j,2n+1(x)}) are respectively the corresponding or-

thonormal bases of Vj,L and Wj,L. Furthermore denoting the coefficients of the decomposition

of the details in the frames {ψa
j,p(x)} and {ψd

j,p(x)} by {daj(n)} and {ddj(n)}, we have per
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Eq.( 5.4.4), the following reconstruction relationship

dj(n) =
+∞∑
−∞

daj(2n)h(p− 2n) +
+∞∑
−∞

ddj(2n)g(p− 2n)

or

dj(n) =
+∞∑
−∞

daj(2n + 1)h(p− 2n− 1) +
+∞∑
−∞

ddj(2n + 1)g(p− 2n− 1).

Proof: Similar to the proof of Lemma 1.

Proof of Proposition 1: See Appendix A.

5.5 Selection and Impact of a Wavelet Support

The Fourier transform Ûd
1 (n, ω) may be written in a Haar basis as

Ûd
1 (n, ω) = ĝ∗(ω)Û(n, ω),

while that of Eq. (5.4.1) may be written as,

Û(n + 1, ω) = (1 +
1

2
ĝ∗(ω)ĝ∗(ω)e−jω)Û(n, ω)

∆
= LF (ω)Û(n, ω) (5.5.1)

where LF (·) is a low pass filter resulting from Eq. (5.4.1). The transfer function correspond-

ing to a Haar wavelet ĝ(ω) with its conjugate denoted by ĝ∗(ω) is given by

g(ω) =
√

2sin(
ω

2
)ej π−ω

2 ,

hence resulting in

LF (ω) = (1 + cosω)/2.

As may be suggested by Eqs. (5.4.1,5.5.1) as well our earlier comments, we may select a

different g(·) (e.g. a higher order wavelet, such as a Daubchies-4 etc.) and investigate the

overall behavior of LF (ω) as illustrated in Fig. 5.2.

The choice the number of vanishing moments is a degree of freedom which may be opti-

mized around specific applications or goals. In Fig. 5.2, we contrast the characteristics of our

diffusion filter using a Haar-based implementation of the Laplacian operator to that based

on a higher order wavelet such as Daubichies wavelet with vanishing moments 4(D4). The
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Figure 5.2: Spectral characteristics of Heat equation-like filter using Haar and Daubechies-
4/6 wavelet functions.
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larger support wavelet (D4) exhibits a more graceful but nevertheless sharp roll-off of the

lowpass filter. This is a direct result of the selected support and hence of the smoothness

of the wavelet. The selection of higher order wavelets may be justified as a solution to the

blockyness problem pointed out in Section I on several counts. Recall that our frame-based

diffusion amounted to a progressive reduction/elimination of specific frame coefficients (high

details). The linearity of this filtering effectively assumes that the wavelet (i.e. orthogo-

nal) coefficients are uncorrelated which as well known, is inaccurate and leads to either a

significant feature distortion or other undesired artifacts in an image reconstruction. This

thus highlights the importance of either accounting for the inter-coefficient correlation and

avoiding undesired leakage of useful information in incorrectly deleted coefficients or of decor-

relating the orthogonal coefficients which may be achieved to a large extent by optimizing

the wavelet support. Increasing an analyzing wavelet support (i.e., adopting a higher or-

der wavelet ψi(x))), has been shown by Tewfik and Kim[90] to yield increased decorrelation

among the wavelet (orthogonal) coefficients. This in turn, enhances the performance of tech-

niques such as wavelet thresholding [23, 51, 84] and diffusion. In concert with the wavelet

support selection, the redundancy of a frame operator which yields a range rank reduction,

affords additional noise elimination while preserving useful features, such as image texture,

as is the goal herein.

An alternative and perhaps more intuitively appealing justification of using higher order

wavelets than Haar (for improved filtered reconstruction) follows upon recalling the assumed

observed model f(x) = s(x) + n(x) which, for simplicity is assumed to be 1-D.

Fact: Increasing the support of an analyzing wavelet in the above frame-based diffusion,

slows down the smoothing of smooth/polynomial trends.

The underlying signal of interest s(x) is an a.s. continuous function with discontinuities,

which may always be represented as

s(x) =
∑

i

sc
i(x)IAi

+
∑

i

sd(x)iIAi
,

where sc(x) =
∑

i s
c
i(x)IAi

and
∑

i s
d(x)iIAi

respectively are the continuous and the discon-

tinuous parts in interval Ai, such that I =
⋃

i Ai, and IAi
is an indicator function on the

interval. It is well known that sc
i(x) may be arbitrarily well approximated by a polynomial

pi(x)(see Fig.( 5.3) for an illustrative example with a continuous function over the partition
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of interval and isolated discontinuities) such that

| sc
i(x)− pi(x) |≤ ε for a small enough ε .

On any interval Ai and ∀ x ∈ Ai, we have

f(x) = sc
i(x) + sd

i (x) + n(x)

= pi(x) + sc
i(x)− pi(x) + sd

i (x) + n(x)

= pk
i (x) + pkc

i (x) + sc
i(x)− pi(x) + sd

i (x) + n(x)

∆
= pk

i (x) + wi(x), (5.5.2)

where pk
i (x) is a polynomial of order k and pkc

i (x) = pi(x)− pk
i (x), k ∈ N, and ‖ wi(x) ‖≤‖

pkc
i (x) + ε + sd

i + n(x) ‖, where ‖ · ‖ is the L2 norm. Given an analysis wavelet ψ̃k
j (x) with k

vanishing moments and minimum support, its application to the signal f(x), results in the

following coefficients

df
i,j =

∫

Ai

f(x)ψ(x− j)dx = d
pk

i
j + dwi

j , and

d
pk

i
j = 0, (5.5.3)

where ”i” denotes the analysis interval Ai and ”j” the translation parameter. Recall that

the progressive filtering of f(x) by the frame-based linear diffusion entailed the smoothing

of the details of
∑

df
i,jψ̃k

j (x) = fd
i (x) =

∑
dw

i,jψ̃
k
j (x),

fdd
ik (x) =

∑
j

< fd
i (x), ψ̃k

j (x) > ψ̃k
j (x) =

∑
j

ddf
i,jψ̃

k
j (x) = wdd

i (x)

Recall that most of the noise energy in fik(x), ∀ i, is projected onto the subspace which

includes fdd(x) and the latter gets systematically smoothed away from f(x) according to

Eq. ??eq:basicdiffusion), ∀ x ∈ Ai

f o
k (x) = f(x)− fdd

ik (x) = pk
i (x) + wa

i (x), (5.5.4)

which when iterated leads to

fn
k (x) = fn−1

k (x)− f
(n−1)dd
k (x) = pk

i (x) + wa
in(x), (5.5.5)
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Figure 5.3: A discontinuous signal and its decomposition as sum of continuous part and
discontinuous part, also approximation of the continuous part.
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Figure 5.4: A profile take from the rock texture image, with filtered result

∀ x ∈ Ai at step n, where wak
i represents the iteratively updated information of wi(x) at

step n, or wa
in = wi(x)−wdd

in (x), amounting to saying that wdd
in (details of details), approach

0 as n →∞. The evaluation of estimation error may be given as

εk =‖ fn(x)− s(x) ‖ (5.5.6)

which is seen to decrease as k′ > k, as ‖ s(x)− pk(x) ‖>‖ s(x)− pk′(x) ‖, where pk(x) is the

integrated contributions of all polynomials of order k over all intervals in the partition. This

hence clearly shows that if d
pk

i
j = 0, i = 1, · · ·N , as would be the case for a proper choice

of vanishing moments of the analyzing wavelet, the continuous signal contribution to wi(x)

would vanish and equivalently the preservation of all the continuous trends (polynomials)

are projected onto the approximation subspace as demonstrated in Fig.( 5.4).

5.6 Image Reconstruction using a Haar Frame

To further investigate the interplay between PDE-based filtering and multiscale analysis, we

proceed to specialize the foregoing development to a Haar wavelet frame and subsequently

derive an equivalent diffusion transformation similar to that of a Heat equation. For clarity
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of notation as well algebraic expediency, we adopt a matrix formalism which is convenient

for and compatible with an image representation as a matrix. It is also readily extended to

any wavelet function which may be selected for the application at hand. It is well known

that a nonorthogonal Haar representation of a signal may still yield a reconstruction. To

demonstrate such a procedure, denote the impulse response of filters corresponding to a Haar

wavelet analysis by h = [h(0), h(1)] = [
1√
2
,

1√
2
], and g = [g(0), g(1)] = [− 1√

2
,

1√
2
]. We

next construct a N ×N circulant matrix from a vector [a(1), a(2), · · · , a(m), 0, · · · , 0]1×N as

Cir[a(1), · · · , a(m)]N×N , and also write Ik,N as a matrix circularly shifted by k columns. i.e.

Ik,N =




0 · · · 0 1 · · · 0

0 · · · 0 0 · · · 0

0 0 · · · 0 · · · 1

1 · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · · · ·
0 · · · 1 0 · · · 0




.

Denote the following circulant matrices,

H = Cir[h(0), h(1)]N×N and G = Cir[g(0), g(1)]N×N

Property 1. Let a matrix A0 denote an initial image. Its redundant representation using a

separable Haar function (i.e., obtaining the following spectral decomposition Low-Low,Low-

High, High-Low, High-High) can be written as

A1 = HA0H
′; D1 = HA0G

′;

D2 = GA0H
′; D3 = GA0G

′,

where “′ ” denotes transposition. The reconstruction matrices can similarly be written as

Rh
1 = h(0)I; Rg

1 = g(0)I;

Rh
2 = h(1)I1,N ; Rg

2 = g(1)I1,N

In light of the fact that a redundant representation is given or may be computed, the

exact reconstruction methods have to be carefully rewritten. Towards that end we have the

following:



CHAPTER 5. WAVELET FRAME-BASED NONLINEAR FILTERING 65

Property 2. Denoting the partial reconstruction matrices by

RAij
0 = Rh

i A1R
h
j
′
; RDij

1 = Rh
i D1R

g
j
′; (5.6.1)

RDij
2 = Rg

i D2R
h
j
′
; RDij

3 = Rg
i D3R

g
j
′, i, j = 1, 2.

we may use any of the following four methods to exactly reconstruct the original image A0.,

method1: A0 = RA11
0 + RD11

1 + RD11
2 + RD11

3

method2: A0 = RA21
0 + RD21

1 + RD21
2 + RD21

3

method3: A0 = RA12
0 + RD12

1 + RD12
2 + RD12

3

method4: A0 = RA22
0 + RD22

1 + RD22
2 + RD22

3 .

5.7 Smoothing in the Frame Domain

The above decomposition and reconstruction procedures follow similar steps for other higher

order wavelets such as Daubechies’. Accounting for the impulse response of corresponding

filters leads to a a slight modification reflected in the matrices H and G which can be written

as

H = Cir[h(0), h(1), h(2), h(3)]N×N ,

G = I2,N ∗ Cir[g(−2), g(−1), g(0), g(1)]N×N

Rh
i = I2,N ∗ Cir[h(i + 1), 0, h(i− 1)]N×N , i = 1, 2

Rg
i = Cir[g(i− 1), 0, g(i− 3)]N×N , i = 1, 2.

Following the same strategy for Daubechies’ wavelets as above, a reconstruction in a frame

may be obtained, and any of the following representations may be used

A0 = Rh
1A1R

h
1

′
+ Rh

1D1R
g
1
′ + Rg

1D2R
h
1

′
+ Rg

1D3R
g
1
′,

A0 = Rh
2A1R

h
1

′
+ Rh

2D1R
g
1
′ + Rg

2D2R
h
1

′
+ Rg

2D3R
g
1
′,

A0 = Rh
1A1R

h
2

′
+ Rh

1D1R
g
2
′ + Rg

1D2R
h
2

′
+ Rg

1D3R
g
2
′,

A0 = Rh
2A1R

h
2

′
+ Rh

2D1R
g
2
′ + Rg

2D2R
h
2

′
+ Rg

2D3R
g
2
′.
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We next denote the detail matrix coefficients at the first level by Di, i = 1, 2, 3, 4 and at the

second level by W j
i , j = 1, 2, 3, 4. Armed with methods 1-4 to reconstruct D1, D2, D3, D4,

and using the knowledge that noise primarily dominates higher spectral bands, we proceed

to effect the smoothing similar to that of a Haar frame-based linear diffusion (i.e., progressive

elimination of detail of detail information from A0) to result in the following recursion,

Un = Un−1 − 1

12
(Rh

1R
g
2W

3
1 Rg

2
′Rg

1
′

+ Rg
1R

g
2W

3
2 Rg

2
′Rh

1

′
+ Rg

1R
g
2W

3
3 Rg

2
′Rg

1
′). (5.7.1)

Note that this recursion will also achieve a linear diffusion as stated in Proposition 1, albeit

with modified intermediate characteristics. The complete smoothing witnessed with the

linear Heat equation will still be the ultimate fate of the signal being filtered. A technique

to slow down such an event is described next.

5.8 Nonlinear Reconstruction

Inspired by the algorithms of the first section such as that of Perona-Malik’s or that proposed

in [52] and to better address the preservation of features, such as texture which, however and

as just shown, is eventually swept away by a linear diffusion. These features as noted above,

are well captured by the correlation among the coefficients, which by using the insight of

Section 3, help us proceed to construct a frame-based nonlinear reconstruction filter. The

flexibility in properly selecting a wavelet function adapted to the texture of interest, together

with the rationale of preserving large magnitude coefficients which best summarize the un-

derlying information while reducing/eliminating the contribution of others as suggested by

Eq. (5.7.1), lead us to propose a transformation of the individual coefficients as

Di = Di ∗ N ({Dj}). (5.8.1)

The generally nonlinear functional may take a monotonic form similar to that proposed by

P-M, where the decay rate is selected based on some prior knowledge we may have about

the underlying image.

For illustrative purposes, we choose N (y) = e−
y2

2K , and hasten to point out that other
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Figure 5.5: One possible nonlinear functional is an exponential weighting.
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functionals adapted to other specific applications are currently under investigation. The set

of coefficients which are subjected to the transformation are,





D1 = D1 ∗ exp(−D2
1/2K);

D2 = D2 ∗ exp(−D2
2/2K);

D3 = D3 ∗ exp(−D2
3/2K),

and their insertion in the above recursive reconstruction yields a nonlinear filter.

5.9 Experimental Results

The absence in our illustrations of blocky artifacts or Gibbs phenomena so common with

many multiscale techniques (wavelet thresholding) and also robust scale space techniques

(e.g. [52]), not only demonstrates the effectiveness of the proposed approach, but also points

to the importance of the synergy that may be gleaned from multiscale analysis and scale

space methods. The performance of our proposed nonlinear filter, is readily assessed in the

Lenna picture shown for three different denoising techniques, namely, our originally pro-

posed technique[49], Perona-Malik’s, and the newly proposed technique. The ability of the

proposed technique to remove noise while preserving features like texture is readily apparent

in Figures 5.6- 5.7 and the importance of such techniques in many applications needs no

further elaboration.
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Noisy lenna image Filtered by our random walk algorithm

Filtered by PM algorithm Filtered by our wavelet algorithm

Figure 5.6: A noisy Lenna image and filtered result with three algorithms.
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Original texture Noisy texture Filtered of noisy texture

Figure 5.7: A texture image, noisy texture image and filtered result with Daubechies 4
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Original fabric image Noisy fabric image Filtered fabric image

Figure 5.8: A texture image, noisy fabric image and filtered result with Daubechies 4
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Clear picture of rocks Noisy picture of rocks Filtered picture of rocks

Figure 5.9: A texture with rocks image, its noisy image and filtered result with Daubechies
4
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5.10 Appendix

Proof of Proposition 3.1: Having established the above two lemmas and specializing the

results to a Haar function,

φ(x) =





1 0 < x < 1

0 others,
ψ(x) =





−1 0 < x < 0.5

1 0.5 < x < 1

0 otherwise,

for which the wavelet filter impulse response is g(0) = − 1√
2
, g(1) = 1√

2
, and which readily

yields the following detail coefficient of U(n, x)

Ud(n, x) = − 1√
2
U(n, x) +

1√
2
U(n, x + 1).

Towards establishing the iterative implementation of the linear diffusion, we first invoke

Eq.( 5.4.3) of Lemma 1, to write

From Lemma 1 and we have

U(n, 2x) = h(0) · Ua(n, 2x) + g(0) · Ud(n, 2x). (5.10.1)

To reconstruct Ud(n, x) from its Haar wavelet decomposition coefficients Uad(n, x), Udd(n, x),

we use Eq.( 5.4.4) to obtain

Ud(n, 2x) = h(1)·Uad(n, 2x− 1) + g(1)·Udd(n, 2x− 1). (5.10.2)

Combining Eq.( 5.10.1) and Eq.( 5.10.2) results in the following

U(n, 2x)

= h(0)·Ua(n, 2x)+g(0)·(h(1) ·Uad(n, 2x− 1)+g(1) ·Udd(n, 2x− 1))

=h(0)·Ua(n, 2x)+g(0)·h(1) ·Uad(n, 2x− 1) +g(0)·g(1)·Udd(n, 2x− 1). (5.10.3)

We may similarly obtain

U(n, 2x + 1)

= h(0)·Ua(n, 2x + 1)+g(0)·h(1)·Uad(n, 2x)+g(0)g(1)·Udd(n, 2x), (5.10.4)

implying the following

U(n, x)

= h(0)·Ua(n, x)+g(0)·h(1) · Uad(n, x− 1)+g(0)g(1)·Udd(n, x− 1). (5.10.5)
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Note that the second level detail component g(0)g(1)Udd(n, x− 1) is equal to−1
2
Udd(n, x− 1),

and is subtracted from the reconstruction of U(n, x) to yield the updated U(n + 1, x). The

following formula, equivalent to a Heat diffusion equation, is hence established,

U(n + 1, x) = U(n, x)− (−1

2
Udd(n, x− 1))

= U(n, x) +
1

2
Udd(n, x− 1) (5.10.6)



Chapter 6

Independent Component Analysis

Independent component analysis(ICA), a data analysis concept that was first introduced by

C.Jutten and J.Herault [47] and also known as blind source separation(BSS) in applications,

has been of intense research interest in a number of application fields ( for instance, speech

recognition, remote sensing and biomedical imaging). Much has been accomplished [16, 14,

13, 42, 7, 76, 2] including the ICA demonstrated potential in signal/image enhancement. It

may be viewed as a natural extension to standard principal component analysis(PCA), which,

as is well known, is based on the correlation structure of observed data. In this chapter, we

investigate novel and efficient ways of carrying out an ICA using novel information theoretic

criteria.

6.1 Linear ICA models

Consider a set of observed signals from multiple sensors, each sensor receiving a different

combination of the source signals, which, for simplicity, are assumed to be random variables,

since if viewed as sample paths of a random process, more complex models are required.

Hence, representing data as random vectors, as we elaborate, facilitates the use of statistical

methods such as entropy, correlation and measurement of redundancy, and turn out to be

a powerful model. Although a general data model, such as, x = f(s) is desirable, here

x = (X1, · · · , Xm) are outputs, s = (S1, · · · , Sn) is a source random vector and f is a
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transform function, most applications assume a linear transform in the form of x = As. To

proceed with describing a linear ICA model, we will assume that

• The source signals are independent random variables

• The distributions of the source signals are unknown

The task in using of independent component analysis(ICA) or Blind source separation(BSS)

is to recover independent source signals from mixed observations under these assumptions.

The linear BBS or ICA model assumes the existence of n independent source signals

s(k) = (S1(k), S2(k), · · · , Sn(k)), and x(k) = (X1(k), X2(k), · · · , Xm(k)), k = 1, · · · , K

are observed signal samples from m sensors, which are linear mixtures of source signals in

the presence of additive noise n(k) = (N1(k), N2(k), · · · , Nm(k)), and more simply,

x(k) = As(k) + n(k)

where A is an unknown full column rank m×n matrix that accounts for the linear mixtures

of the signals, with K observed discrete samples. In this model, s(k) and x(k) could be

complex signals and m ≥ n is usually imposed ( some special m < n cases have been studied

in [17, 59, 10] ), however, we only consider the simplest model, namely, real-valued signals,

m = n, and noise free observations, i.e.,

x(k) = As(k),

since this model captures the essence of the ICA or BSS problem, where noise is usually

considered as a nuance parameter and is largely neglected in the literature. An example of

mixed signals obtained from independent sources subjected to rotation is displayed in Fig.

(6.1).

To recover signals from mixed data is to estimate a full rank matrix W such that the

estimated signal components of y(k) = (Y1(k), · · · , Yn(k)) are as independent as possible

and the outcome sources space ( may be permuted and scaled ) are close to source signals,

namely

y(k) = Wx(k) = WAs(k) = Bs(k).
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Figure 6.1: Independent source signals and mixed signals obtained by rotation.
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We assume that at most one of the source signals Si(k) is allowed to have a Gaussian

distribution. This follows from the fact that it is impossible to separate several Gaussian

sources from each other [16].

6.2 Existing ICA Algorithms

ICA algorithms are closely related to principal component analysis [46] , factor analysis [36],

and projection pursuit algorithms [30, 41]. In many ICA algorithms, it is required that

mixture data be normalized by its variance and be pre-whitened, which means that we can

always assume a unity variance for each component (we also assume 0 mean-valued data,

as in practice, we can always subtract the mean value from the original data ) and that

there exists a whitening transform matrix V such that the whitened data U = V X has a

correlation matrix R = E(UU τ ) = I, where I is an identity matrix.

Further, by assuming that at most one of the components is Gaussian distributed, and

a full rank matrix A, which together with the fact that independence is not affected by

different ordering and scaling of the components, a unique solution to ICA is assured in the

sense that permutation and scaling are allowed for each component.

Upon observing the mixed signals x = (X1, · · · , Xn), many algorithms seeking to

estimate the matrix W have been proposed on the basis of information theoretic as well

as neural network-based criteria. These algorithms consist of optimizing proposed objective

functions known as contrast functions, or cost functions [16]. Valid contrast functions must

be designed in such a way that the source separation is achieved when they reach their optimal

( minimum or maximum ) values. Common contrast functions are based on measures such

as, entropy, high-order cumulants, divergence among the joint probability density functions

of observed data for independent models.

The first neural source separation algorithm was presented in [47], and has used the prin-

ciple of cancelling non-linear cross-correlations of the form E{g1(Yi)g2(Yj)} (where g1, g2 are

some suitably chosen odd non-linear functions, and Yi, Yj are estimations of source indepen-

dent signals ) to achieve independent components, which in turn implies that E{g1(Yi)g2(Yj)} =

E{g1(Yi)}E{g2(Yj)} when Yi, Yj are independent. Further, a nonlinear objective function
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based on a generalization of PCA is proposed by introducing a nonlinear function g(x) to

seek out principal components by ( see [44, 70] ),

w1 = arg max
||w||=1

E{(g(wτx))2}. (6.2.1)

Inspired by neural networks, a contrast function was derived in [7] on the basis of maxi-

mizing the Shannon entropy of non-linear outputs from a neural network. Specifically, one

is to maximize the following formula

L = H(g1(w
τ
1x), · · · , gm(wτ

mx)), (6.2.2)

where x is the input to a neural network whose outputs are of the form gi(w
τ
i x) and wi are

the weight vectors of the neurons. Here Shannon differential entropy of a continuous random

variable (or a random vector) X with a probability density function (pdf) f(x) is defined as

H(X) = −
∫

Ω

f(x) log f(x)dx. (6.2.3)

In [16], it was proposed to use mutual information as a contrast function to more fully de-

scribe the statistical independence property. In a probabilistic/information theoretic setting,

researchers have held the mutual information measure as one of choice in identifying a proper

representation basis of random samples of signals/sources, and for which the resulting coeffi-

cients are independent. This is an interesting property of source independence as it does not

include any implicit or explicit assumption about the distributions of the sources. Mutual

information for a set of random variables (Y1, · · · , Yn) may be written as

I(Y1, · · · , Yn) =
n∑

i=1

H(Yi)−H(Y1, · · · , Yn) (6.2.4)

Using the maximum likelihood principle and, if we assume a source vector s is distributed

according to a pdf q(s), a contrast function is formulated as the log-likelihood function

of a pdf of the estimated output y = A−1x, for T samples x(1), · · · ,x(T ), and output

y(1), · · · ,y(T ), to take the form [13, 18]:

φT
ML(y) = log p(y) =

1

T

T∑

k=1

log q(A−1x(k))− log(det(A)). (6.2.5)
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By the law of large numbers, when T → ∞, the log-likelihood function converges to the

expectation of log q(A−1x) + constant, denoted as φML(y) = −E{log q(A−1x)}. This may

also be motivated by the Kullback-Leibler divergence K(f |g), which can be viewed as a

distance between two probability density functions f and g ( though it is not a real distance

measure because it is not symmetric) and is also written as K(X|Y ) where f and g are pdfs

of two random variables X and Y . The definition of Kullback-Leibler divergence [53] is the

following

K(f |g)
4
=

∫

S

f(s) log

(
f(s)

g(s)

)
ds. (6.2.6)

This in turn may be used to establish that the log-likelihood function φML(y) may be written

as

φML(y) = K(y|s). (6.2.7)

The Maximum Likelihood principle thus attempts to find a matrix A such that the distribu-

tion of y = A−1x is as close as possible to the hypothesized joint distribution of the sources.

Denote ỹ as a random vector with independent entries, and each entry distributed as the

corresponding entry of y ( ỹ is thus called the factorial distributed random variable of Y ),

we see that

K(y|s) = K(y|ỹ) + K(ỹ|s), (6.2.8)

for any vector with independent entries. Eq. (6.2.8) shows that the minimum value of

K(y|s) is reached by minimizing both terms,

1. the first right term of Eq. (6.2.8), which is, in fact, mutual information, therefore

required independence among each entry of y

2. the second right term of Eq. (6.2.8), which requires that the individual entries of y

have the same distribution as those of s.

we can thus see that, if the source distributions are known, φML is more accurate be-

cause it expresses directly the fitness between data and model. The initial distributions of

the source signals are however, usually unknown, which reduces the maximum likelihood

algorithm to that of maximizing mutual information by only considering an independence

property, which of course remains an important feature of the sources.
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It is also proved in [13] that the principle of neural network entropy maximization, namely,

the infomax principle, is equivalent to maximum likelihood estimation by properly choosing

a function g = (g1, · · · , gm) in Eq. (6.2.2) as a cumulative distribution function ( cdf ) of

the source variables, and if known.

While the above measures are sound and theoretically appealing, their big drawback is

in having to estimate the pdf’s or the entropy which is not always trivial. Several approx-

imations to MI based on polynomial Taylor density expansions have been proposed and

yielding contrast functions based on higher order cumulants [16, 12]. Cumulants of order 2

and 4 have been predominantly used and yielding for example the following approximations

of y = (Y1, · · · , Yn) of the form [16],

I(y) ≈ C +
1

48

n∑
i=1

[4k3(Yi)
2 + k4(Yi)

2 + 7k4(Yi)
4 − 6k3(Yi)

2k4(Yi)] (6.2.9)

where ki(X) = E(X i), i = 1, 2, · · · , are i− th order cumulants of a random variable X and

C is a constant [16]. The approximation, however, is valid only when the density function of

Y is close to the Gaussian probability density function, otherwise, poor estimate may result.

Higher-order cumulant tensors have also been directly used as criteria by taking advantage

of the prevailing algebraic structure [9, 10, 11], a good review may be found in [12]. This

method consists of looking for the eigenvectors of a higher order cumulant tensor. The

fourth-order cumulant tensor can be defined as the following linear operator T from the

space of m×m matrices to the space of m2 ×m2 matrices with the i, j element of T as:

T (K)ij =
∑

k,l

cum(Xi, Xj, Xk, Xl)Kkl (6.2.10)

where cum(Xi, Xj, Xk, Xl) denotes the fourth-order cumulant and the subscript ij means

the (i, j)− th element of a matrix, and Kkl is a m×m matrix. This linear operator has m2

eigenvalues. Solving for the eigenvectors of this eigenmatrix would lead to an estimation of

the ICA model. The advantage of this method is that it requires no knowledge of the dis-

tribution of the independent source components, with the understanding that the efficiency

issue constraints it to small dimensions.

With emergence of approximation techniques of differential entropy, more sophisticated
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approximations of mutual information may be constructed and applied to ICA [43, 22]. Non-

parametric estimation of mutual information [19] based on dependent data also provides a

useful technique to directly implement ICA algorithms and further motivating the investiga-

tion of alternative measurements, such as Jensen-Rényi divergence [37, 1] and Rényi mutual

divergence as criteria to ICA [5]. The technique developed to approximate α− Rényi entropy

and Rényi divergence are also described in [5, 1, 38, 39].

Practical consideration, such as an unreliable faulty source, or that the underlying sources

may in fact be Gaussian, may lead one to favor a technique which would avoid over-

assumptions about the prevailing statistics over another with selectable data ranges (e.g.

ignore large outliers) and with varying degrees of weighted contributions instead of the com-

monly used uniform equal weighting as is typical of many existing measures, such as weighted

covariance matrix.

Miscellaneous alter existing approaches are deferred to the literature [76], [2] and refer-

ences therein as we have instead focused on techniques relevant to our later discussing.

6.3 Applications of ICA

ICA, or BBS techniques have been applied in any fields where an array of m receivers collect

data of linear mixtures of n source signals. Examples include speech separation ( known as

’cocktail party problem’ ) as several microphones are placed in different points while there

are several speakers. It may be also applied in processing arrays of radar or sonar signals

and processing of multi-sensor biomedical recording signals, such as EEG, MEG signals used

to record brain activities. Medical imaging such as fMRI, processing of geophysical data and

restoration of image features are also other typical applications.



Chapter 7

New measure criteria for ICA

As we mentioned earlier, mutual information(MI), as a measure between two probability

densities has been intensively used by many authors as a contrast function for ICA. Its

estimation is complicated by having to use empirical density functions, which, results in a

weakness to estimate entropies. Research has mainly focuses on finding higher-order ap-

proximations of mutual information or different techniques. This criterion, namely, mutual

information, however, has recently been fallen out of favor to other information measures,

such as α−Jensen-Rényi ( α−JR ) divergence [37]. This divergence measure provides a

distance among a group of probability densities, and thus can serve as an alternative and

improved criterion to ICA. Also with the increasing interest in simplified and robust estima-

tions of mutual information, some recent results [1, 19] are significant enough to allow us to

reasonably consider applying them in ICA investigations. In this chapter, we propose Rényi

mutual divergence as a new criterion on account of its additional features over mutual infor-

mation. We also propose a technique to approximate Rényi mutual divergence by analyzing

dependent data, and discuss in detail its properties later in this chapter.

7.1 Definition of Rényi Entropy

To introduce two divergence measures based on the Rényi entropy, an information measure

that was first introduced by Rényi in [81, 82], which has been shown to be theoretically as

83
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well as practically useful, we provide a brief overview on α−Rényi entropy.

For a discrete random variable X with sample space Ω, whose corresponding probability

distribution P (xi) = P (X = xi), xi ∈ Ω, i ∈ I, where I is an index set, and for α ∈
(0, 2], α 6= 1, the α−Rényi Entropy is defined as

Hα(P (x)) =
1

1− α
ln

(∑
i∈I

Pα(xi)

)
, (7.1.1)

with ”ln” denoting the natural logarithm.

For a continuous random variable X with a probability density function (pdf) p(x), x ∈
Rd, α−Rényi entropy is defined as

Hα(p(x)) =
1

1− α
ln

(∫
pα(x)dx

)
, (7.1.2)

where α ∈ (0, 2], α 6= 1.

We can see that, when α → 1, α−Rényi entropy degenerates to the Shannon entropy

[85], which is defined as

H(p(x)) = −
∫

p(x) ln p(x)dx, (7.1.3)

for a continuous random variable and

H(P (x)) = −
∑
i∈I

P (xi) ln P (xi), (7.1.4)

for a discrete random variable.

The advantage of Rényi entropy is that the probability (or the probability density) is

modulated by a factor α, which along with its simpler form make Rényi entropy easier

to implement, and with better adapted statistical properties to a random variable. Rényi

entropy is concave for all α ∈ (0, 2] and Fig. (7.1) demonstrates this property for a specific

example with Bernoulli distributions for different α ∈ (0, 2].

7.2 Jensen-Rényi divergence as a new criterion for ICA

7.2.1 Introduction to α−Jensen-Rényi divergence

α−Jensen-Rényi (α−JR) divergence is a new concept recently proposed in [37], and may

be viewed as a generalization of Rényi entropy [81, 82] and of Jensen-information [61], see
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Figure 7.1: Renyi entropy of Bernoulli distributions at several α compared to Shannon
entropy

[1] for a thorough investigation of Rényi entropy within the context of Minimum Spanning

Trees(MST). The α−JR divergence as an information measure, invokes a weighted combina-

tion of several distributions whose contribution is modulated by way of an α-exponentiation

parameter (Viz. Eq. 7.2.1).

The generalized nature of this measure has shown very promising results in applica-

tions [37] and exhibits a wide scope of applicability tied to one’s ability to reinterpret the

population densities and to hence reexpress the measure itself. Specifically, this measure

may simply be interpreted as one of independence between two or more probability density

functions (data population) and is therefore naturally applicable to the well known problem

of independent component analysis (ICA) ( or also known as the Blind Source Separation

problem).

In light of this practical interest and of the intrinsic properties of the α−JR divergence

measure, we propose it be the basis for a new criterion as further elaborated on in the next
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subsection. In spite of its numerous advantages, our proposed technique nevertheless unveils

a limitation in its computational implementation, where a bottleneck emerges in the course

of estimating probability densities.

7.2.2 α−Jensen-Rényi divergence as an Independence Measure

For a set of probability distributions {Pi(x)}i=1···n, α−JR divergence is defined as

JR{ωi}i=1···n
α ({Pi(x)}i=1··· ,n)

= Hα(
n∑

i=1

ωiPi(x))−
n∑

i=1

Hα(Pi(x))ωi, (7.2.1)

with
∑

i ωi = 1, 0 ≤ ωi ∈ R and 0 < α < 2. The α−JR divergence measures the distance

between two or more distributions by adjusting weights on different distributions.

By Jensen’s inequality, one can show that the above expression is minimized and achieves

a 0-value if the distributions are identical, and is maximized when they are all different ( i.e.

each distribution function is a Dirac function positioned in different locations). If applied to a

set of conditional distributions of X, Y , for example, a minimization of the α−JR divergence

would be tantamount to establishing that the distributions of X conditioned on Y , for all Y ,

are equal, hence implying the independence of X and Y . It is worth noting that this measure

provides an additional flexibility of choosing α and ωi, hence affording the selectivity among

the data as mentioned earlier.

Given the essence of an ICA problem, the fitting measure to adopt is that of independence,

which raises a natural question of how to reinterpret the α−JR divergence to elicit such

information contained in observed random variables from different populations. By defining

in Eq. ( 7.2.1) pi(x) = P (X = x|Y = yi) (i.e., as a conditional probability), we can

easily conclude that, JR
{ωi}i=1···n
α ({pi(x)}i=1···n), denoted by JRα(X, Y ), yields a measure of

independence between X and Y when it is minimized.

7.2.3 Application to ICA

To proceed with the description of the source separation problem, we denote the observations

Xi, i = 1 · · ·n, x = (X1, X2, · · · , Xn) as a result of a mixing action of an unknown matrix
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A on source data s = (S1, S2, · · · , Sn), expressed as a sequence of independent random

variables Si, i = 1 · · ·n of 0-mean and unit-variance, and more explicitly as a linear model

x = As.

Our goal is to then recover s from merely observing x. The solution to this problem requires

one to typically first proceed to whiten the data, i.e., diagonalize the data covariance matrix

so that In = WAAτW τ , where ”τ” denotes transposition and In is an identity matrix. The

subsequent step is to search for an adapted pairwise rotation of axes to yield independent

data along these directions, and effected by

θθ
{ωk}k=1···n
ij = arg min

θ
(JR{ωi}i=1···n

α (Xθ
i , X

θ
j ))

where Xθ
i , X

θ
j are the corresponding random variables to Xi, Xj rotated by an angle θ. By

iterating this processing to other pairs, all of the independent components are gleaned.

To illustrate the proposed technique, we provide two mixture cases: the first shown in

Fig. (7.2), consists of two acoustic speech signals, and the second shown in Fig. (7.4)

includes signals with heavy tail distributions. The recovered signals in both cases are shown

in the corresponding figures, and demonstrate the effectiveness of the proposed technique.

In Figs. (7.3) and (7.5) we compare and display the potential gains of using JR divergence

over mutual information. The sharper and more significant nulls of the JR measure suggest

a resilience and additional robustness in the presence of perturbations such as estimation

errors.

It is important to note that the choice of parameters ”ωi” and ”α” in this example have

not been necessarily optimized (uniform prior chosen somewhat arbitrarily and ”α” selected

in light of the underlying signals (i.e. 1 < α < 2 for super-gaussian processes and 0 < α < 1

for sub-gaussian processes). This in fact, and to the best of our knowledge, remains an open

problem.
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7.3 α−Rényi mutual divergence as a New Criterion for ICA

7.3.1 Introduction to α−Rényi divergence

α−Rényi divergence, an important information divergence introduced by Rényi [81, 82], can

also be broadly viewed as a distance measure between two probability density functions in

spite of its non-symmetric structure ( it may be made symmetric at a cost of a more complex

form), it is defined as

RDα(f, g) =
1

α− 1
ln

(∫
fα(x)g1−α(x)dx

)
, (7.3.1)

where 0 < α < 2, α 6= 1 and f(x), g(x), x ∈ Rd are two probability density functions of two

random variables X and Y . This divergence shares the same maximization and minimization

points as α−JR divergence and KL-divergence, namely, the minimization point is reached

when f(x) = g(x), the maximization point is reached when f(x), g(x) are totally different (

or, one of the densities f(x), g(x) should be a Dirac function in Rd ).

The definition of α−Rényi divergence is fairly general in that some other divergences are

its special case for a specific value of α. We can, for instance, see that KL-divergence is

obtained when α → 1,

lim
α→1

RDα(f, g) =

∫
f(x) ln

f(x)

g(x)
dx, (7.3.2)

and when α = 1/2, the so-called Battacharya distance is obtained

RD1/2(f, g) = −2 ln

(∫ √
f(x)g(x)dx

)
. (7.3.3)

As is well known, KL-divergence becomes the mutual information if we take f(x) as a

joint probability density of a random vector x = (X1, · · · , Xn), where Xi, i = 1, · · · , n. is

a random variable with Rd as a sample space, and g(x) as the factorial probability density

in the form of g(x) = f1(x) · · · fn(x), where fi(x), i = 1, · · · , n, x ∈ Rd is the pdf of each

individual random variable Xi, i = 1 · · ·n. When the two probability densities are used

to write a α− Rényi divergence, it is called α−Rényi mutual divergence, and is denoted

as MDα(x) or MDα(X1, · · · , Xn). α−Rényi mutual divergence measures the dependency

among a group of random variables X1, · · · , Xn by the distance between its joint pdf and its

factorial pdf.
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Figure 7.2: An application using α-JR Divergence
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Figure 7.3: ICA criterion using mutual information and α-JR divergence.
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Figure 7.4: An application using α-JR Divergence
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Figure 7.5: ICA criterion using mutual information and α-JR divergence.
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Thus, α−Rényi mutual divergence, as a generalization of mutual information, can serve

as an independence information measure with its value depending on the index α applied

to each distribution. In the following subsection, we restrict α−Rényi mutual divergence to

two random variables (X, Y ) and prove a theorem that compares the degree of independence

measurement of mutual information and Rényi mutual divergence between the two random

variables. This therefore provides a theoretical argument for one to apply Rényi mutual

divergence to ICA.

7.3.2 Comparison between α−Rényi mutual divergence and Mutual Informa-

tion

In order to illustrate the advantage of using α−Rényi mutual divergence (with 1 < α < 2)

as a criterion for ICA, we prove the following theorem,

Theorem 9. For two continuous random variables X,Y with joint pdf h(x, y) and marginal

distributions f(x), g(y), we have the following inequality between α−Rényi mutual divergence

MDα(X,Y ) and mutual information I(X, Y ),

case 1: Given 0 < α < 1,

MDα(X, Y ) ≤ I(X,Y )

case 2: Given 1 < α ≤ 2,

MDα(X, Y ) ≥ I(X,Y )

Proof : For the joint probability density h(x, y) of random variables X, Y and the corre-

sponding marginal pdfs f(x), g(y) , the α−Rényi mutual divergence may be written as

MDα(X, Y ) =
1

α− 1
ln

∫
hα(x, y) (f(x)g(y))1−α dxdy

=
1

α− 1
ln

∫
h(x, y)

(
h(x, y)

f(x)g(y)

)α−1

dxdy

=
1

α− 1
ln E

{(
h(X,Y )

f(X)g(Y )

)α−1
}

(7.3.4)
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Since the function p(x) = ln(x) is strictly concave, according to Jensen-Inequality, we

have

E{p(X)} ≤ p(E{X})

from which, we have that, for two random variables X, Y ,

E

{
ln

(
h(X, Y )

f(X)g(Y )

)α−1
}
≤ ln E

{(
h(X,Y )

f(X)g(Y )

)α−1
}

(7.3.5)

when 0 < α < 1, we have α− 1 < 0, thus

MDα(X,Y ) =
1

α− 1
ln E

{(
h(X, Y )

f(X)g(Y )

)α−1
}

≤ 1

α− 1
E

{
ln

(
h(X, Y )

f(X)g(Y )

)α−1
}

= E

{
ln

(
h(X,Y )

f(X)g(Y )

)}

= I(X, Y ) (7.3.6)

when 1 < α ≤ 2, we have α− 1 > 0, thus

MDα(X,Y ) =
1

α− 1
ln E

{(
h(X, Y )

f(X)g(Y )

)α−1
}

≥ 1

α− 1
E

{
ln

(
h(X, Y )

f(X)g(Y )

)α−1
}

= E

{
ln

(
h(X,Y )

f(X)g(Y )

)}

= I(X, Y ) (7.3.7)

Noted that ′ =′ is established only when h(x, y) = f(x)g(y), namely X,Y are indepen-

dent, which concludes the proof.

We here give two examples of this theorem with value α = 0.2 and α = 1.8, Fig.(7.6) and

Fig(7.7). These two pictures compare the theoretical values of α−Rényi mutual divergence

of a sequence of Gaussian sources with that of mutual information, the formula of the

α−Rényi mutual divergence of a sequence of Gaussian sources is calculated in Section 7.5,

we also draw the approximations of α−Rényi mutual divergence and mutual information in
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Figure 7.6: Approximated 0.2−Rényi mutual divergence and its exact theoretical value com-
pared to mutual information

these two pictures, again, detail knowledge about the approximation is deferred to Section

7.5.

7.4 Application to ICA

As a result of the above theorem, we can see that when 1 < α ≤ 2, α−Rényi mutual

divergence is a better adapted measure. This is made more compelling when considering the
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Figure 7.7: Approximated 1.8−Rényi mutual divergence and its exact theoretical value com-
pared to mutual information

fact that α−Rényi divergence is a concave function in each distribution, and that α−Rényi

mutual divergence attains a 0 minimum when two random variables are independent, and a

maximal H2−α(X) when the two random variables are fully dependent. In our application

of such a measure, we propose a non-parametric estimation of α−Rényi mutual divergence

based on dependent data as shown in section 7.5.

The target function we use for ICA is the following

θ = arg min
θ

(MDα(Xθ
i , X

θ
j ))

The technique we use here is similar to that of α−JR divergence. To further clarify, we

demonstrate the separation performance of the α−Rényi mutual divergence as ICA criterion,

an experiment using the source mixed signal and an α = 1.6 for a mutual divergence are

shown in Fig.(7.8), as well as a comparison of 1.6−Rényi mutual divergence and mutual
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information given in Fig.(7.9). From these two figures, we clearly see that α−Rényi mutual

divergence (1 < α < 2) is a better criterion than mutual information, and holds an advantage

over α-JR divergence whose efficient estimation presents some challenging issues.

7.5 Approximation of α−Rényi Mutual Divergence

7.5.1 Introduction

In this Section, we investigate the estimation of Rényi mutual information using the relative

frequencies calculated on cells of adaptive partitions of Rn of X×Y . This is a generalization

of a non-parametric estimation of mutual information proved by [86] and further implemented

by [19].

As described in Section 7.3.1, Rényi divergence aims at measuring the distance between

two probability density functions and is given by

RDα(p, q) =
1

α− 1
ln

(∫
pα(x)q1−α(x)dx

)
, (7.5.1)

with 0 < α < 2. It is identically 0 if the random variables are equal in distribution. The

vanishing property of Rényi divergence is also equivalent, and as noted earlier, to indepen-

dence of two random variables when their joint density and their marginal distributions are

invoked. To proceed with the description of a non-parametric alternative method to estimate

α−Rényi mutual divergence of two random variables in this case, we state the following two

theorems in the following.

7.5.2 Approximation Theorems of α−Rényi mutual divergence

We consider a pair of random variables ξ, η taking values in a measurable space (X ×
Y, SX × SY ) with probability distributions Pξ(.) and Pη(.) respectively. Assume the joint

distribution Pξ,η(.) of ξ, η is absolutely continuous with respect to the product distribution

Pξ × Pη(.), then from Radon-Nikodym theorem, there exists a function aξ,η(x, y), assuming

finite nonnegative values and measurable relative to the σ-algebra SX × SY , such that for

all B ∈ SX × SY , the probability Pξ,η(B) is given by the integral of aξ,η(x, y) over B with
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Figure 7.8: Mixed signals and its separation using 1.6−Rényi mutual divergence.
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Figure 7.9: 1.6−Rényi mutual divergence measure compared to mutual information
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respect to the measure Pξ × Pη(.) :

Pξ,η(B) =

∫

B

aξ,η(x, y)Pξ × Pη(dx, dy) (7.5.2)

The quantity aξ,η(x, y) is called the density of the measure Pξη with respect to the measure

Pξ × Pη(.) and is conventionally denoted by

aξ,η(x, y) =
dPξη(.)

dPξ × Pη(.)
. (7.5.3)

If we assume probabilities Pξη, Pξ, Pη have probability densities, namely, dPξη(.) = h(x, y)dxdy,

dPξ(x) = f(x)dx, dPη(y) = g(y)dy, from the definition of α−Rényi mutual divergence of

random variables X and Y , we have

MDα(X,Y ) =
1

α− 1
ln

∫

X×Y

hα(x, y) (f(x)g(y))1−α dxdy

=
1

α− 1
ln

∫

X×Y

aα−1
ξ,η (x, y)Pξη(dx, dy). (7.5.4)

We consider the approximation of α−Rényi mutual divergence based on a sequence of finite

partition C(k) = {C(k)
i } of X × Y with the property that C(k1) is a finer partition than C(k2)

when k1 > k2. A finite partition C of X × Y is C = {Ci}i=1,··· ,n such that
⋃n

i=1 Ci = X × Y ,

where Ci, i = 1, · · · , n are subsets of X × Y such that Ci

⋂
Cj = ∅, i 6= j. Each set

Ci is called a cell of the finite partition C. A partition C(1) is a refinement ( finer or nest

partition ) of another partition C(2), if for each C
(1)
i ∈ C(1), there exists a C

(2)
j ∈ C(2) such

that C
(1)
i ⊂ C

(2)
j . C(1), C(2) are called nested partitions. An example of nested partitions is

shown in Fig. (7.10).

Theorem 7.5.1. For any partition C = (C1, · · · , Cn) of X × Y , we have the following

conclusions for different cases of α,

Case. 1. 0 < α < 1,

∫

X×Y

aα−1
ξ,η (x, y)Pξη(dx, dy) = inf

C

∑
i

Pα
ξη(Ci)(Pξ × Pη(Ci))

1−α (7.5.5)

Case. 2. 1 < α ≤ 2,

∫

X×Y

aα−1
ξ,η (x, y)Pξη(dx, dy) = sup

C

∑
i

Pα
ξη(Ci)(Pξ × Pη(Ci))

1−α (7.5.6)
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Figure 7.10: Example: Two nested partitions of R2

To practically implement Theorem (7.5.1) , we need the following theorem such that we

can use the nested cell technique to develop a algorithm to efficiently approximate α−Rényi

mutual divergence by considering dependent data.

Theorem 7.5.2. For a set of nested partitions C(k) of X × Y , we have

Case 1: for 0 < α < 1,

inf
C

∑
i

Pα
ξη(Ci)(Pξ×Pη(Ci))

1−α = lim
k→∞

∑

Ci=Ai×Bj∈C(k)

Pα
ξη(Ai×Bj)(Pξ(Ai)×Pη(Bj))

1−α (7.5.7)

Case 2: for 1 < α ≤ 2,

sup
C

∑
i

Pα
ξη(Ci)(Pξ × Pη(Ci))

1−α = lim
k→∞

∑

Ci=Ai×Bj∈C(k)

Pα
ξη(Ai ×Bj)(Pξ(Ai)× Pη(Bj))

1−α

(7.5.8)

The proof details for Theorems (7.5.1) and (7.5.2) are deferred to Appends A. and B.

Theorems (7.5.1) and (7.5.2) provide us with an approach to estimate α-Rényi divergence

by appropriately dissecting dependent data space into sufficiently small cells that in the limit

achieve the ”inf” of the product given in Eq. (7.5.8).

To illustrate such a procedure, we generate a sequence of samples from a pair of correlated

Bi-normally distributed random variables (X,Y ), with the following joint probability density

function

f(x, y) =
1

[2πDet(Σ)]1/2
exp

{−vΣ−1vτ/2
}
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where v = (x− µx, y − µy) and

Σ =


 σ2

x rσxσy

rσxσy σ2
y


 ,

and where r is the correlation coefficient of X and Y , and with marginal normal densities

f(x), f(y) with mean values µx, µy and variances σ2
x, σ

2
y.

To this case, we may also compute the theoretical Rényi divergence and show it to be

Rα(X, Y )

=
1

α− 1
log

(∫
f(x, y)α(f(x)f(y))1−αdxdy

)

=
2− α

2α− 2
log(1− r2)

− 1

2α− 2
log((1− (1− α)r2)2 − α2r2). (7.5.9)

A comparison of our estimate and of the theoretical value are shown in Fig. (7.11), and

demonstrates that an arbitrarily accurate estimate is achievable.

7.6 Conclusion

We have proposed two more robust information measure demonstrated for ICA, α−JR di-

vergence and α−Rényi mutual divergence, but as we have argued, α−JR divergence has a

potentially broader scope of applicability depending on one’s ability to appropriately inter-

pret the probability measures and the related parameters in the JR divergence, this problem

can be overcome by using Rényi divergence as we address the numerical complexity of this

measure and propose a non-parametric alternative implementation.
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Figure 7.11: Approximated 0.5−Rényi mutual divergence and its exact theoretical value

7.7 Appendix A.

We only prove case 1 of Theorem (7.5.1), which is an immediate result of the following

Lemma (7.7.1) and Lemma (7.7.2). Case 2 may be similarly proved.

If probabilities Pξη(x, y) and Pξ × Pη have corresponding probability densities pξη(x, y)

and pξ(x)pη(y), we see that

aξ,η(x, y) =
pξη(x, y)

pξ(x)pη(y)
(7.7.1)

and therefore Rényi mutual divergence may be obtained as
∫

X×Y

pα
ξ,η(x, y)(pξ(x)pη(y))1−αdxdy =

1

α− 1
ln

∫

X×Y

aξ,η(x, y)α−1Pξ,η(dx, dy) (7.7.2)

we have the following two inequalities regarding the approximation of the integral in the

above equation, namely,
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Lemma 7.7.1. For 0 < α < 1, and any partitions of X × Y ,

∫

X×Y

aα−1
ξ,η (x, y)Pξη(dx, dy) ≤ inf

C

∑
i

Pα
ξη(Ci)(Pξ × Pη(Ci))

1−α (7.7.3)

Proof : Taking a function g(x) = xα, which is concave when 0 < α < 1 (see Fig.(7.12),

hence −g(x) be a convex function), by Jensen’s inequality, we have, for every probability

distribution F (x),

f=x^0.5
h=x^2

Legend

functions f=x^0.5,  h=x^2

0

1

2

3

4

0.4 0.8 1.2 1.6 2x

Figure 7.12: Functions of f = xα, with 0 < α < 1 and 1 < α ≤ 2

∫ ∞

0

xαdF (x) ≤
(∫ ∞

0

xdF (x)

)α

. (7.7.4)

Now fixing a set B ∈ SX × SY for which Pξ × Pη(B) > 0, and define a probability

distribution of an event Au = (aξη(x, y) < u) constrained to B

FB(u) = Pξ × Pη{Au|B}
=

Pξ × Pη{(aξη(x, y) < u)
⋂

B}
Pξ × Pη(B)

, (7.7.5)

we have
∫ ∞

0

udFB(u) =
1

Pξ × Pη(B)

∫

B

aξη(x, y)Pξ × Pη(dx, dy) =
Pξη(B)

Pξ × Pη(B)
(7.7.6)
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and ∫ ∞

0

uαdFB(u) =
1

Pξ × Pη(B)

∫

B

aα−1
ξη (x, y)Pξη(dx, dy) (7.7.7)

Applying Eq. (7.7.4) to Eq. (7.7.7) shows that, for ∀ B ∈ SX ×SY with Pξ×Pη(B) > 0,

we have ∫

B

aα−1
ξη (x, y)Pξη(dx, dy)

=
1

Pξ × Pη(B)

∫ ∞

0

uαdFB(u)

≤ Pξ × Pη(B)

(
Pξη(B)

Pξ × Pη(B)

)α

= (Pα
ξη(B))(Pξ × Pη(B))1−α. (7.7.8)

We can see that Eq. (7.7.8) is also true when Pξ × Pη(B) = 0. Now we consider a certain

dissection {Ci} of the space X × Y . From Eq. (7.7.8), we have

I(C1, · · · , Cn)
∧
=

n∑
i=1

(Pα
ξη(Ci))(Pξ × Pη(Ci))

1−α

≥
n∑

i=1

∫

Ci

aα−1
ξη (x, y)Pξη(dx, dy)

=

∫

X×Y

aα−1
ξη (x, y)Pξη(dx, dy) (7.7.9)

since dissection {Ci} of the space X × Y is arbitrarily chosen, we see that Eq. (7.7.3) is

established.

Lemma 7.7.2. For 0 < α < 1, and any partitions of X × Y ,
∫

X×Y

aα−1
ξ,η (x, y)Pξη(dx, dy) ≥ inf

C

∑
i,j

Pα
ξη(Ci)(Pξ × Pη(Ci))

1−α (7.7.10)

Proof : For ∀ ε > 0, since xα → 0 as x → 0 and xα−1 → 0 as x → ∞ for 0 < α < 1, we

can choose a constant K small enough so that,

0 ≤ Pα
ξη{aα−1

ξη (x, y) ≤ K} ≤ ε

2
. (7.7.11)

Now consider a set {aα−1
ξη (x, y) > K}, which can be represented in the form of a sum of

nonintersecting sets Ci ∈ SX × SY , i = 1, · · · , n so that for all i

hi = inf
(x,y)∈Ci

aξη(x, y), hi = sup
(x,y)∈Ci

aξη(x, y)
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we have

(hi)
α−1 − (hi)

α−1 ≤ ε

2
(7.7.12)

From Eq. (7.7.6), let B = Ci, we have that, for ∀ i

hi ≤
Pξη(Ci)

Pξ × Pη(Ci)
≤ hi, (7.7.13)

and yielding

(hi)
α−1 ≤

(
Pξη(Ci)

Pξ × Pη(Ci)

)α−1

≤ (hi)
α−1, 0 < α < 1. (7.7.14)

Further, by the definition of hi, hi, we have

Pξη(Ci)(hi)
α−1 ≤

∫

Ci

aα−1
ξη (x, y)Pξη(dx, dy) ≤ Pξη(Ci)(hi)

α−1. (7.7.15)

From Eq. (7.7.14) and Eq. (7.7.15) we see that
∣∣∣∣Pα

ξη(Ci)(Pξ × Pη(Ci))
1−α −

∫

Ci

aα−1
ξη (x, y)Pξη(dx, dy)

∣∣∣∣ ≤ [(hi)
α−1−(hi)

α−1]Pξη(Ci), (7.7.16)

summing the inequalities Eq. (7.7.16) over i and using Eq. (7.7.12), we have
∣∣∣∣∣I(C1, · · · , Cn)−

∫

{aα−1
ξη >K}

aα−1
ξη (x, y)Pξη(dx, dy)

∣∣∣∣∣ ≤
ε

2
. (7.7.17)

Let Cn+1 = {aα−1
ξη ≤ K}, we see that the system of sets C1, · · · , Cn, Cn+1 form a dissection

of the space X × Y . From Eq. (7.7.17) we have that

I(C1, · · · , Cn, Cn+1) = I(C1, · · · , Cn) + (Pα
ξη(Cn+1)(Pξ × Pη(Cn+1))

1−α)

≤
∫

{aα−1
ξη >K}

aα−1
ξη (x, y)Pξη(dx, dy) + Pα

ξη(Cn+1)(Pξ × Pη(Cn+1))
1−α +

ε

2
(7.7.18)

Since Cn+1 = {aα−1
ξη ≤ K}, It is clear that

Pα
ξη(Cn+1)(Pξ × Pη(Cn+1))

1−α

= Pα
ξη({aα−1

ξη ≤ K})(Pξ × Pη({aα−1
ξη ≤ K}))(1−α)

≤ Pα
ξη({aα−1

ξη ≤ K}) <
ε

2
(7.7.19)

Combining this inequality with inequality (7.7.11), we see that

inf I(C1, · · · , Cn+1) ≤ I(C1, · · · , Cn+1) ≤
∫

{aα−1
ξη >K}

aα−1
ξη (x, y)Pξη(dx, dy) + ε, (7.7.20)

which in light of the fact that ε is arbitrary and K may be chosen small enough, we can see

that Eq. (7.7.10) is established.
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7.8 Appendix B

Similarly, we only need to prove Case 1 of Theorem 7.5.2(as case 2 is similarly proved), where

we need the Lemmas (3) and (4)

Lemma 3. For 0 ≤ x1, x2, y1, y2 ≤ 1, we have the following inequality for 0 < α < 1,

xα
1 y1−α

1 + xα
2 y1−α

2 ≤ (x1 + x2)
α(y1 + y2)

1−α (7.8.1)

Proof : Let f(x1, x2, y1, y2) = xα
1 y1−α

1 + xα
2 y1−α

2 − (x1 + x2)α(y1 + y2)
1−α

Take partial derivative of f(x1, x2, y1, y2) with respect to x1, we will have

f ′x1
(x1, x2, y1, y2)

= αxα−1
1 y1−α

1 − α(x1 + x2)
α−1(y1 + y2)

1−α

= α

[(
x1

y1

)α−1

−
(

x1 + x2

y1 + y2

)α−1
]

(7.8.2)

where, for 0 < α < 1, and y1, y2 > 0

f ′x1
=





< 0 if
x1

y1

>
x1 + x2

y1 + y2

, namely x1 >
y1

y2

x2

≥ 0 if
x1

y1

≤ x1 + x2

y1 + y2

, namely x1 ≤ y1

y2

x2

This leads to the following inequalities for ∀ y1, y2 > 0 when 1 ≥ x1 > y1

y2
x2

f(1, x2, y1, y2) ≤ f(x1, x2, y1, y2) ≤ f(
y1

y2

x2, x2, y1, y2),

and when 0 ≤ x1 ≤ y1

y2
x2

f(0, x2, y1, y2) ≤ f(x1, x2, y1, y2) ≤ f(
y1

y2

x2, x2, y1, y2).

From these two inequalities, we have, for 0 ≤ x1, x2 ≤ 1, 0 < y1, y2 ≤ 1,

f(x1, x2, y1, y2) ≤ f(
y1

y2

x2, x2, y1, y2)
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and since

f(
y1

y2

x2, x2, y1, y2)

=

(
y1

y2

x2

)α

y1−α
1 + xα

2 y1−α
2 −

(
y1

y2

x2 + x2

)α

(y1 + y2)
1−α

=
xα

2 (y1 + y2)

yα
2

− xα
2 (y1 + y2)

α

yα
2

(y1 + y2)
1−α

= 0 (7.8.3)

(7.8.1) is immediately obtained for y1, y2 > 0, which is clearly true when y1 = 0 or y2 = 0.

With the help of Lemma (3), we have the following Lemma (4),

Lemma 4. For any two nested partitions C(k), C(l), k > l of X × Y , we have for 0 < α < 1,

∑

Ci=Ai×Bj∈C(k)

Pα
ξη(Ai ×Bj)(Pξ(Ai)× Pη(Bj))

1−α

≤
∑

Ci=Ai×Bj∈C(l)

Pα
ξη(Ai ×Bj)(Pξ(Ai)× Pη(Bj))

1−α (7.8.4)

Proof :

We know that for any cell A×B ∈ C(l), A×B can be written as

A×B =
M∑

m=1

Am ×Bm

To prove Lemma 4, we only need to show that

Pα
ξη(A×B)(Pξ(A)× Pη(B))1−α ≥

M∑
m=1

Pα
ξη(Am ×Bm)(Pξ(Am)× Pη(Bm))1−α

If M = 2

2∑
m=1

Pα
ξη(Am ×Bm)(Pξ(Am)× Pη(Bm))1−α (7.8.5)

≤ [Pα
ξη(A1 ×B1) + Pα

ξη(A2 ×B2)][Pξ(A1)× Pη(B1) + Pξ(A2)× Pη(B2)]
1−α (7.8.6)

In the case that A = A1 + A2, B = B1 = B2, from Lemma (3), we have
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[Pα
ξη(A1 ×B1) + Pα

ξη(A2 ×B2)][Pξ(A1)× Pη(B1) + Pξ(A2)× Pη(B2)]
1−α

≤ Pα
ξη(A×B)[Pξ(A)× Pη(B)]1−α (7.8.7)

This inequality can be repeat and proved that it is true for A = A1 + A2, B = B1 + B2,

thus can be easily generated to a general number M , thus Lemma (4) follows.



Chapter 8

Possible Future Work

In this chapter, we overview briefly the contributions of this dissertation, we also present

some possible further development to extend our work.

8.1 Summaries

Our first contribution in this work is the construction of a stochastic framework for nonlinear

diffusions and its utilization to solve a long standing problem of an evolution stopping time.

While the previously mention contribution provided a significant gain in denoising and in

segmentation, it also need improves in texture preservation. In showing a direct connection

between nonlinear diffusion and wavelet frame analysis filtering, efficient and texture pre-

serving nonlinear techniques were developed.

While nonlinearities introducing in process were aimed at accounting for the various depen-

dencies among the components of a signal/image, an alternative approach would be, and as

developed in chapter 6 and 7, to use the underlying PDF’s to find and separate independent

components(ICA)
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8.2 Possible Future Research

In this section, we list several potential topics related to this thesis that might constitute

good leads for future research.

Among the many extensions one might pursue is an 8-neighbor transition scenario in the

Markov chain. Another interesting variation on the theme is a two-step transition random

walk which may also ultimately be driven to a continuous space setting.

In the nonlinear wavelet frame setting, wavelets, with a higher order of vanishing moments

are expected to yield a better performance, while the analytical tractability of the problem

as resolved in chapter 5 remains an open problem.

While theoretical not limited in the dimensionality of the ICA problem, our 1-D development

is in real need to be extended to ultimately address two and higher dimensions for applications

ranging from denoising to feature extraction to classification and recognition.



Bibliography

[1] B. Ma A. O. Hero and O. Michel, Alpha-divergence for image indexing and retrieval,

Preprint (2000).

[2] S. I. Amari and A. Cichocki, Adaptive blind signal processing - neural network ap-

proaches, Proceedings of the IEEE 10 (1998), 2026–2048.

[3] L. Arnold, Stochastic differential equations: Theory and applications, John Wiley and

Sons, New York, London, Sydney, Toronto, 1974.

[4] Y. Bao and H. Krim, bridging scale-space to multiscale frame analysis, ICASSP’01 Salt

lake city.

[5] , A new criterion to independent component analysis, ICASSP’02, submitted.

[6] , Upon bridging scale-space to multiscale frame analysis, Wavelets in Signal and

Image Analysis: From Theory to Practice, COMPUTATIONAL IMAGING AND VI-

SION ,Volume 19, Chapter 6.

[7] A. J. Bell and T. J. Sejnowski, An information-maximization approach to blind separa-

tion and blind deconvolution, Neural computation 7(6) (1995), 1004–1034.

[8] J. Canny, A computational approach to edge detection, IEEE Trans. on PAMI, vol.

PAMI-8, No. 6 (Nov, 1986).

[9] J-F. Cardoso, Eigen-structure of the fourth-order cumulant tensor with application to the

blind source separation problem, In Proc. ICASSP’90, Albuquerque, NM, USA (1990),

2655–2658.

111



BIBLIOGRAPHY 112

[10] , Super-symmetric decomposition of the fourth-order cumulant tensor, blind iden-

tification of more sources than sensors, In Proc. ICASSP’91 (1991), 3109–3112.

[11] J. F. Cardoso, Iterative techniques for blind sources separation using only fourth order

cumulants, Eusipco, 1992, pp. 739–742.

[12] J-F. Cardoso, Blind signal separation: statistical principles, Proceedings of the

IEEE,special issue on blind identification and estimation 90 (1998), 2009–2026.

[13] , Infomax and maximum likelihood for source separation, IEEE Letters on signal

processing 4(4) (Apr. 1997), 112–114.

[14] J-F. Cardoso and A. Souloumiac, Blind beamforming for non gaussian signals, IEEE

Proceedings-F 140(6) (Dec. 1993), 395–401.
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(1976), 525–580.

[83] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal

algorithms, Physica D, 1992.

[84] N. Saito, Local feature extraction and its applications using a library of bases, Ph.D.

thesis, Yale University, Dec. 1994.

[85] C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27, pt. I,

pp. 379-423; pt. II, pp. 623-656 (1948).
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